File size: 2,256 Bytes
0921be6 f0ee821 0921be6 8536a99 0921be6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated/blob/main/LICENSE
language:
- en
pipeline_tag: image-text-to-text
base_model: Qwen/Qwen2-VL-7B-Instruct
tags:
- chat
- abliterated
- uncensored
---
# huihui-ai/Qwen2-VL-7B-Instruct-abliterated
This is an uncensored version of [Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) created with abliteration (see [this article](https://huggingface.co/blog/mlabonne/abliteration) to know more about it).
Special thanks to [@FailSpy](https://huggingface.co/failspy) for the original code and technique. Please follow him if you're interested in abliterated models.
It was only the text part that was processed, not the image part.
## Usage
You can use this model in your applications by loading it with Hugging Face's `transformers` library:
```python
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
model = Qwen2VLForConditionalGeneration.from_pretrained(
"huihui-ai/Qwen2-VL-7B-Instruct-abliterated", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("huihui-ai/Qwen2-VL-7B-Instruct-abliterated")
image_path = "/tmp/test.png"
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": f"file://{image_path}",
},
{"type": "text", "text": "Please describe the content of the photo in detail"},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=256)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
output_text = output_text[0]
print(output_text)
```
|