huihui-ai commited on
Commit
3df47d2
·
verified ·
1 Parent(s): 6d19e27

Upload merge_model_weights.py

Browse files
Files changed (1) hide show
  1. merge_model_weights.py +59 -0
merge_model_weights.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import os
4
+ from tqdm import tqdm
5
+
6
+ # Set environment variables and configure the number of threads
7
+ os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
8
+ torch.set_num_threads(1)
9
+
10
+ # Define model names and output directory
11
+ base_model_name1 = "huihui-ai/QwQ-32B-Preview-abliterated"
12
+ base_model_name2 = "huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated"
13
+ output_model_dir = "huihui-ai/QwQ-32B-Coder-Fusion-9010" # Directory to save the merged model
14
+
15
+ # Specify the device for computation
16
+ device = torch.device("cpu")
17
+
18
+ # Load models and tokenizer onto the CPU
19
+ base_model1 = AutoModelForCausalLM.from_pretrained(base_model_name1, torch_dtype=torch.bfloat16).to(device)
20
+ base_model2 = AutoModelForCausalLM.from_pretrained(base_model_name2, torch_dtype=torch.bfloat16).to(device)
21
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name1)
22
+
23
+ def merge_model_weights(base_model1, base_model2, alpha=0.9):
24
+ """
25
+ Merge the weights of two models based on a specified ratio and return the updated model.
26
+ The parameter alpha determines the blending ratio, with a default of 0.9
27
+ (90% from base_model1 and 10% from base_model2).
28
+ """
29
+ # Merge weights of the output layers
30
+ base_model1.lm_head.weight.data = (alpha * base_model1.lm_head.weight.data + (1 - alpha) * base_model2.lm_head.weight.data).to(device)
31
+ base_model1.model.embed_tokens.weight.data = (alpha * base_model1.model.embed_tokens.weight.data + (1 - alpha) * base_model2.model.embed_tokens.weight.data).to(device)
32
+
33
+ # Merge weights for each transformer layer
34
+ with tqdm(total=len(base_model1.model.layers), desc="Merging weights for layers") as pbar:
35
+ for i in range(len(base_model1.model.layers)):
36
+ base_model1.model.layers[i].input_layernorm.weight.data = (alpha * base_model1.model.layers[i].input_layernorm.weight.data + (1 - alpha) * base_model2.model.layers[i].input_layernorm.weight.data).to(device)
37
+ base_model1.model.layers[i].mlp.down_proj.weight.data = (alpha * base_model1.model.layers[i].mlp.down_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].mlp.down_proj.weight.data).to(device)
38
+ base_model1.model.layers[i].mlp.gate_proj.weight.data = (alpha * base_model1.model.layers[i].mlp.gate_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].mlp.gate_proj.weight.data).to(device)
39
+ base_model1.model.layers[i].mlp.up_proj.weight.data = (alpha * base_model1.model.layers[i].mlp.up_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].mlp.up_proj.weight.data).to(device)
40
+ base_model1.model.layers[i].post_attention_layernorm.weight.data = (alpha * base_model1.model.layers[i].post_attention_layernorm.weight.data + (1 - alpha) * base_model2.model.layers[i].post_attention_layernorm.weight.data).to(device)
41
+ base_model1.model.layers[i].self_attn.q_proj.weight.data = (alpha * base_model1.model.layers[i].self_attn.q_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].self_attn.q_proj.weight.data).to(device)
42
+ base_model1.model.layers[i].self_attn.k_proj.weight.data = (alpha * base_model1.model.layers[i].self_attn.k_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].self_attn.k_proj.weight.data).to(device)
43
+ base_model1.model.layers[i].self_attn.v_proj.weight.data = (alpha * base_model1.model.layers[i].self_attn.v_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].self_attn.v_proj.weight.data).to(device)
44
+ base_model1.model.layers[i].self_attn.o_proj.weight.data = (alpha * base_model1.model.layers[i].self_attn.o_proj.weight.data + (1 - alpha) * base_model2.model.layers[i].self_attn.o_proj.weight.data).to(device)
45
+
46
+ pbar.update(1) # Update the progress bar
47
+
48
+ # Merge weights for the final normalization layer
49
+ base_model1.model.norm.weight.data = (alpha * base_model1.model.norm.weight.data + (1 - alpha) * base_model2.model.norm.weight.data).to(device)
50
+
51
+ return base_model1
52
+
53
+ # Merge the weights of the two models with a blending ratio of 0.9
54
+ merged_model = merge_model_weights(base_model1, base_model2, alpha=0.9)
55
+
56
+ # Save the merged model and tokenizer
57
+ merged_model.save_pretrained(output_model_dir)
58
+ tokenizer.save_pretrained(output_model_dir)
59
+ print(f"Merged model and tokenizer saved to {output_model_dir}")