hossamdaoud commited on
Commit
cfd5805
1 Parent(s): 2c80ad6

Upload 11 files

Browse files
.gitattributes CHANGED
@@ -25,7 +25,6 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
@@ -33,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,192 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: openrail
3
+ widget:
4
+ - text: I am totally a human, trust me bro.
5
+ example_title: default
6
+ - text: >-
7
+ In Finnish folklore, all places and things, and also human beings, have a
8
+ haltija (a genius, guardian spirit) of their own. One such haltija is called
9
+ etiäinen—an image, doppelgänger, or just an impression that goes ahead of a
10
+ person, doing things the person in question later does. For example, people
11
+ waiting at home might hear the door close or even see a shadow or a
12
+ silhouette, only to realize that no one has yet arrived. Etiäinen can also
13
+ refer to some kind of a feeling that something is going to happen. Sometimes
14
+ it could, for example, warn of a bad year coming. In modern Finnish, the
15
+ term has detached from its shamanistic origins and refers to premonition.
16
+ Unlike clairvoyance, divination, and similar practices, etiäiset (plural)
17
+ are spontaneous and can't be induced. Quite the opposite, they may be
18
+ unwanted and cause anxiety, like ghosts. Etiäiset need not be too dramatic
19
+ and may concern everyday events, although ones related to e.g. deaths are
20
+ common. As these phenomena are still reported today, they can be considered
21
+ a living tradition, as a way to explain the psychological experience of
22
+ premonition.
23
+ example_title: real wikipedia
24
+ - text: >-
25
+ In Finnish folklore, all places and things, animate or inanimate, have a
26
+ spirit or "etiäinen" that lives there. Etiäinen can manifest in many forms,
27
+ but is usually described as a kind, elderly woman with white hair. She is
28
+ the guardian of natural places and often helps people in need. Etiäinen has
29
+ been a part of Finnish culture for centuries and is still widely believed in
30
+ today. Folklorists study etiäinen to understand Finnish traditions and how
31
+ they have changed over time.
32
+ example_title: generated wikipedia
33
+ - text: >-
34
+ This paper presents a novel framework for sparsity-certifying graph
35
+ decompositions, which are important tools in various areas of computer
36
+ science, including algorithm design, complexity theory, and optimization.
37
+ Our approach is based on the concept of "cut sparsifiers," which are sparse
38
+ graphs that preserve the cut structure of the original graph up to a certain
39
+ error bound. We show that cut sparsifiers can be efficiently constructed
40
+ using a combination of spectral techniques and random sampling, and we use
41
+ them to develop new algorithms for decomposing graphs into sparse subgraphs.
42
+ example_title: from ChatGPT
43
+ - text: >-
44
+ Recent work has demonstrated substantial gains on many NLP tasks and
45
+ benchmarks by pre-training on a large corpus of text followed by fine-tuning
46
+ on a specific task. While typically task-agnostic in architecture, this
47
+ method still requires task-specific fine-tuning datasets of thousands or
48
+ tens of thousands of examples. By contrast, humans can generally perform a
49
+ new language task from only a few examples or from simple instructions -
50
+ something which current NLP systems still largely struggle to do. Here we
51
+ show that scaling up language models greatly improves task-agnostic,
52
+ few-shot performance, sometimes even reaching competitiveness with prior
53
+ state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an
54
+ autoregressive language model with 175 billion parameters, 10x more than any
55
+ previous non-sparse language model, and test its performance in the few-shot
56
+ setting. For all tasks, GPT-3 is applied without any gradient updates or
57
+ fine-tuning, with tasks and few-shot demonstrations specified purely via
58
+ text interaction with the model. GPT-3 achieves strong performance on many
59
+ NLP datasets, including translation, question-answering, and cloze tasks, as
60
+ well as several tasks that require on-the-fly reasoning or domain
61
+ adaptation, such as unscrambling words, using a novel word in a sentence, or
62
+ performing 3-digit arithmetic. At the same time, we also identify some
63
+ datasets where GPT-3's few-shot learning still struggles, as well as some
64
+ datasets where GPT-3 faces methodological issues related to training on
65
+ large web corpora. Finally, we find that GPT-3 can generate samples of news
66
+ articles which human evaluators have difficulty distinguishing from articles
67
+ written by humans. We discuss broader societal impacts of this finding and
68
+ of GPT-3 in general.
69
+ example_title: GPT-3 paper
70
+ datasets:
71
+ - NicolaiSivesind/human-vs-machine
72
+ - gfissore/arxiv-abstracts-2021
73
+ language:
74
+ - en
75
+ pipeline_tag: text-classification
76
+ tags:
77
+ - mgt-detection
78
+ - ai-detection
79
  ---
80
+
81
+ Machine-generated text-detection by fine-tuning of language models
82
+ ===
83
+
84
+ This project is related to a bachelor's thesis with the title "*Turning Poachers into Gamekeepers: Detecting Machine-Generated Text in Academia using Large Language Models*" (see [here](https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/3078096)) written by *Nicolai Thorer Sivesind* and *Andreas Bentzen Winje* at the *Department of Computer Science* at the *Norwegian University of Science and Technology*.
85
+
86
+ It contains text classification models trained to distinguish human-written text from text generated by language models like ChatGPT and GPT-3. The best models were able to achieve an accuracy of 100% on real and *GPT-3*-generated wikipedia articles (4500 samples), and an accuracy of 98.4% on real and *ChatGPT*-generated research abstracts (3000 samples).
87
+
88
+ The dataset card for the dataset that was created in relation to this project can be found [here](https://huggingface.co/datasets/NicolaiSivesind/human-vs-machine).
89
+
90
+ **NOTE**: the hosted inference on this site only works for the RoBERTa-models, and not for the Bloomz-models. The Bloomz-models otherwise can produce wrong predictions when not explicitly providing the attention mask from the tokenizer to the model for inference. To be sure, the [pipeline](https://huggingface.co/docs/transformers/main_classes/pipelines)-library seems to produce the most consistent results.
91
+
92
+
93
+ ## Fine-tuned detectors
94
+
95
+ This project includes 12 fine-tuned models based on the RoBERTa-base model, and three sizes of the bloomz-models.
96
+
97
+ | Base-model | RoBERTa-base | Bloomz-560m | Bloomz-1b7 | Bloomz-3b |
98
+ |------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
99
+ | Wiki | [roberta-wiki](https://huggingface.co/andreas122001/roberta-wiki-detector) | [Bloomz-560m-wiki](https://huggingface.co/andreas122001/bloomz-560m-wiki-detector) | [Bloomz-1b7-wiki](https://huggingface.co/andreas122001/bloomz-1b7-wiki-detector) | [Bloomz-3b-wiki](https://huggingface.co/andreas122001/bloomz-3b-wiki-detector) |
100
+ | Academic | [roberta-academic](https://huggingface.co/andreas122001/roberta-academic-detector) | [Bloomz-560m-academic](https://huggingface.co/andreas122001/bloomz-560m-academic-detector) | [Bloomz-1b7-academic](https://huggingface.co/andreas122001/bloomz-1b7-academic-detector) | [Bloomz-3b-academic](https://huggingface.co/andreas122001/bloomz-3b-academic-detector) |
101
+ | Mixed | [roberta-mixed](https://huggingface.co/andreas122001/roberta-mixed-detector) | [Bloomz-560m-mixed](https://huggingface.co/andreas122001/bloomz-560m-mixed-detector) | [Bloomz-1b7-mixed](https://huggingface.co/andreas122001/bloomz-1b7-mixed-detector) | [Bloomz-3b-mixed](https://huggingface.co/andreas122001/bloomz-3b-mixed-detector) |
102
+
103
+
104
+ ### Datasets
105
+
106
+ The models were trained on selections from the [GPT-wiki-intros]() and [ChatGPT-Research-Abstracts](), and are separated into three types, **wiki**-detectors, **academic**-detectors and **mixed**-detectors, respectively.
107
+
108
+ - **Wiki-detectors**:
109
+ - Trained on 30'000 datapoints (10%) of GPT-wiki-intros.
110
+ - Best model (in-domain) is Bloomz-3b-wiki, with an accuracy of 100%.
111
+ - **Academic-detectors**:
112
+ - Trained on 20'000 datapoints (100%) of ChatGPT-Research-Abstracts.
113
+ - Best model (in-domain) is Bloomz-3b-academic, with an accuracy of 98.4%
114
+ - **Mixed-detectors**:
115
+ - Trained on 15'000 datapoints (5%) of GPT-wiki-intros and 10'000 datapoints (50%) of ChatGPT-Research-Abstracts.
116
+ - Best model (in-domain) is RoBERTa-mixed, with an F1-score of 99.3%.
117
+
118
+
119
+ ### Hyperparameters
120
+
121
+ All models were trained using the same hyperparameters:
122
+
123
+ ```python
124
+ {
125
+ "num_train_epochs": 1,
126
+ "adam_beta1": 0.9,
127
+ "adam_beta2": 0.999,
128
+ "batch_size": 8,
129
+ "adam_epsilon": 1e-08
130
+ "optim": "adamw_torch" # the optimizer (AdamW)
131
+ "learning_rate": 5e-05, # (LR)
132
+ "lr_scheduler_type": "linear", # scheduler type for LR
133
+ "seed": 42, # seed for PyTorch RNG-generator.
134
+ }
135
+ ```
136
+
137
+ ### Metrics
138
+
139
+ Metrics can be found at https://wandb.ai/idatt2900-072/IDATT2900-072.
140
+
141
+
142
+ In-domain performance of wiki-detectors:
143
+
144
+ | Base model | Accuracy | Precision | Recall | F1-score |
145
+ |-------------|----------|-----------|--------|----------|
146
+ | Bloomz-560m | 0.973 | *1.000 | 0.945 | 0.972 |
147
+ | Bloomz-1b7 | 0.972 | *1.000 | 0.945 | 0.972 |
148
+ | Bloomz-3b | *1.000 | *1.000 | *1.000 | *1.000 |
149
+ | RoBERTa | 0.998 | 0.999 | 0.997 | 0.998 |
150
+
151
+
152
+ In-domain peformance of academic-detectors:
153
+
154
+ | Base model | Accuracy | Precision | Recall | F1-score |
155
+ |-------------|----------|-----------|--------|----------|
156
+ | Bloomz-560m | 0.964 | 0.963 | 0.965 | 0.964 |
157
+ | Bloomz-1b7 | 0.946 | 0.941 | 0.951 | 0.946 |
158
+ | Bloomz-3b | *0.984 | *0.983 | 0.985 | *0.984 |
159
+ | RoBERTa | 0.982 | 0.968 | *0.997 | 0.982 |
160
+
161
+
162
+ F1-scores of the mixed-detectors on all three datasets:
163
+
164
+ | Base model | Mixed | Wiki | CRA |
165
+ |-------------|--------|--------|--------|
166
+ | Bloomz-560m | 0.948 | 0.972 | *0.848 |
167
+ | Bloomz-1b7 | 0.929 | 0.964 | 0.816 |
168
+ | Bloomz-3b | 0.988 | 0.996 | 0.772 |
169
+ | RoBERTa | *0.993 | *0.997 | 0.829 |
170
+
171
+
172
+ ## Credits
173
+
174
+ - [GPT-wiki-intro](https://huggingface.co/datasets/aadityaubhat/GPT-wiki-intro), by Aaditya Bhat
175
+ - [arxiv-abstracts-2021](https://huggingface.co/datasets/gfissore/arxiv-abstracts-2021), by Giancarlo
176
+ - [Bloomz](bigscience/bloomz), by BigScience
177
+ - [RoBERTa](https://huggingface.co/roberta-base), by Liu et. al.
178
+
179
+
180
+ ## Citation
181
+
182
+ Please use the following citation:
183
+
184
+ ```
185
+ @misc {sivesind_2023,
186
+ author = { {Nicolai Thorer Sivesind} and {Andreas Bentzen Winje} },
187
+ title = { Machine-generated text-detection by fine-tuning of language models },
188
+ url = { https://huggingface.co/andreas122001/roberta-academic-detector }
189
+ year = 2023,
190
+ publisher = { Hugging Face }
191
+ }
192
+ ```
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bigscience/bloomz-1b7",
3
+ "apply_residual_connection_post_layernorm": false,
4
+ "architectures": [
5
+ "BloomForSequenceClassification"
6
+ ],
7
+ "attention_dropout": 0.0,
8
+ "attention_softmax_in_fp32": true,
9
+ "bias_dropout_fusion": true,
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "hidden_dropout": 0.0,
13
+ "hidden_size": 2048,
14
+ "id2label": {
15
+ "0": "human-produced",
16
+ "1": "machine-generated"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "label2id": {
20
+ "human-produced": 0,
21
+ "machine-generated": 1
22
+ },
23
+ "layer_norm_epsilon": 1e-05,
24
+ "masked_softmax_fusion": true,
25
+ "model_type": "bloom",
26
+ "n_head": 16,
27
+ "n_inner": null,
28
+ "n_layer": 24,
29
+ "offset_alibi": 100,
30
+ "pad_token_id": 3,
31
+ "pretraining_tp": 2,
32
+ "problem_type": "single_label_classification",
33
+ "seq_length": 4096,
34
+ "skip_bias_add": true,
35
+ "skip_bias_add_qkv": false,
36
+ "slow_but_exact": false,
37
+ "torch_dtype": "float32",
38
+ "transformers_version": "4.26.1",
39
+ "unk_token_id": 0,
40
+ "use_cache": true,
41
+ "vocab_size": 250880
42
+ }
gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d944d6907131fce4941c1b98753b6c6304e9268438faa750202a7ed282544a4
3
+ size 14575
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19c575370b6179b490f435df9c74d0ea7aabd16f264cf932690c39af9fca6ebb
3
+ size 627
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "<pad>",
5
+ "unk_token": "<unk>"
6
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa18280d17cb2240255ae226f2e8ce87bc72ae3fb9f7044d0238395b4d8b7a33
3
+ size 14500707
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "model_max_length": 1000000000000000019884624838656,
6
+ "name_or_path": "bigscience/bloomz-1b7",
7
+ "pad_token": "<pad>",
8
+ "padding_side": "left",
9
+ "special_tokens_map_file": null,
10
+ "tokenizer_class": "BloomTokenizer",
11
+ "unk_token": "<unk>"
12
+ }
trainer_state.json ADDED
@@ -0,0 +1,922 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "global_step": 1750,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 4.9971428571428576e-05,
13
+ "loss": 2.5589,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.02,
18
+ "learning_rate": 4.9e-05,
19
+ "loss": 4.0188,
20
+ "step": 35
21
+ },
22
+ {
23
+ "epoch": 0.02,
24
+ "eval_accuracy": 0.5033333333333333,
25
+ "eval_f1": 0.015852047556142668,
26
+ "eval_loss": 1.71467924118042,
27
+ "eval_precision": 0.8571428571428571,
28
+ "eval_recall": 0.008,
29
+ "eval_runtime": 245.0349,
30
+ "eval_samples_per_second": 12.243,
31
+ "eval_steps_per_second": 1.53,
32
+ "step": 35
33
+ },
34
+ {
35
+ "epoch": 0.04,
36
+ "learning_rate": 4.8e-05,
37
+ "loss": 1.1269,
38
+ "step": 70
39
+ },
40
+ {
41
+ "epoch": 0.04,
42
+ "eval_accuracy": 0.5356666666666666,
43
+ "eval_f1": 0.15932407966203982,
44
+ "eval_loss": 0.8176602125167847,
45
+ "eval_precision": 0.8407643312101911,
46
+ "eval_recall": 0.088,
47
+ "eval_runtime": 245.0774,
48
+ "eval_samples_per_second": 12.241,
49
+ "eval_steps_per_second": 1.53,
50
+ "step": 70
51
+ },
52
+ {
53
+ "epoch": 0.06,
54
+ "learning_rate": 4.7e-05,
55
+ "loss": 0.9901,
56
+ "step": 105
57
+ },
58
+ {
59
+ "epoch": 0.06,
60
+ "eval_accuracy": 0.5946666666666667,
61
+ "eval_f1": 0.36401673640167365,
62
+ "eval_loss": 1.4929765462875366,
63
+ "eval_precision": 0.8446601941747572,
64
+ "eval_recall": 0.232,
65
+ "eval_runtime": 244.7538,
66
+ "eval_samples_per_second": 12.257,
67
+ "eval_steps_per_second": 1.532,
68
+ "step": 105
69
+ },
70
+ {
71
+ "epoch": 0.08,
72
+ "learning_rate": 4.600000000000001e-05,
73
+ "loss": 1.2113,
74
+ "step": 140
75
+ },
76
+ {
77
+ "epoch": 0.08,
78
+ "eval_accuracy": 0.619,
79
+ "eval_f1": 0.7197842608482471,
80
+ "eval_loss": 0.744438648223877,
81
+ "eval_precision": 0.5692128732066692,
82
+ "eval_recall": 0.9786666666666667,
83
+ "eval_runtime": 244.6225,
84
+ "eval_samples_per_second": 12.264,
85
+ "eval_steps_per_second": 1.533,
86
+ "step": 140
87
+ },
88
+ {
89
+ "epoch": 0.1,
90
+ "learning_rate": 4.5e-05,
91
+ "loss": 0.7836,
92
+ "step": 175
93
+ },
94
+ {
95
+ "epoch": 0.1,
96
+ "eval_accuracy": 0.689,
97
+ "eval_f1": 0.5959289735816371,
98
+ "eval_loss": 0.6166332364082336,
99
+ "eval_precision": 0.8504326328800988,
100
+ "eval_recall": 0.45866666666666667,
101
+ "eval_runtime": 244.7744,
102
+ "eval_samples_per_second": 12.256,
103
+ "eval_steps_per_second": 1.532,
104
+ "step": 175
105
+ },
106
+ {
107
+ "epoch": 0.12,
108
+ "learning_rate": 4.4000000000000006e-05,
109
+ "loss": 0.7519,
110
+ "step": 210
111
+ },
112
+ {
113
+ "epoch": 0.12,
114
+ "eval_accuracy": 0.775,
115
+ "eval_f1": 0.7330960854092525,
116
+ "eval_loss": 0.6699690818786621,
117
+ "eval_precision": 0.9008746355685131,
118
+ "eval_recall": 0.618,
119
+ "eval_runtime": 245.4062,
120
+ "eval_samples_per_second": 12.225,
121
+ "eval_steps_per_second": 1.528,
122
+ "step": 210
123
+ },
124
+ {
125
+ "epoch": 0.14,
126
+ "learning_rate": 4.3e-05,
127
+ "loss": 1.0327,
128
+ "step": 245
129
+ },
130
+ {
131
+ "epoch": 0.14,
132
+ "eval_accuracy": 0.7083333333333334,
133
+ "eval_f1": 0.5988078862906923,
134
+ "eval_loss": 0.5815353393554688,
135
+ "eval_precision": 0.9588839941262849,
136
+ "eval_recall": 0.43533333333333335,
137
+ "eval_runtime": 245.1736,
138
+ "eval_samples_per_second": 12.236,
139
+ "eval_steps_per_second": 1.53,
140
+ "step": 245
141
+ },
142
+ {
143
+ "epoch": 0.16,
144
+ "learning_rate": 4.2e-05,
145
+ "loss": 0.7039,
146
+ "step": 280
147
+ },
148
+ {
149
+ "epoch": 0.16,
150
+ "eval_accuracy": 0.7043333333333334,
151
+ "eval_f1": 0.5891616489115331,
152
+ "eval_loss": 1.3649965524673462,
153
+ "eval_precision": 0.9650986342943855,
154
+ "eval_recall": 0.424,
155
+ "eval_runtime": 247.043,
156
+ "eval_samples_per_second": 12.144,
157
+ "eval_steps_per_second": 1.518,
158
+ "step": 280
159
+ },
160
+ {
161
+ "epoch": 0.18,
162
+ "learning_rate": 4.1e-05,
163
+ "loss": 1.26,
164
+ "step": 315
165
+ },
166
+ {
167
+ "epoch": 0.18,
168
+ "eval_accuracy": 0.7916666666666666,
169
+ "eval_f1": 0.7464503042596349,
170
+ "eval_loss": 0.6255013942718506,
171
+ "eval_precision": 0.9533678756476683,
172
+ "eval_recall": 0.6133333333333333,
173
+ "eval_runtime": 245.1858,
174
+ "eval_samples_per_second": 12.236,
175
+ "eval_steps_per_second": 1.529,
176
+ "step": 315
177
+ },
178
+ {
179
+ "epoch": 0.2,
180
+ "learning_rate": 4e-05,
181
+ "loss": 0.5196,
182
+ "step": 350
183
+ },
184
+ {
185
+ "epoch": 0.2,
186
+ "eval_accuracy": 0.855,
187
+ "eval_f1": 0.8476357267950964,
188
+ "eval_loss": 0.4524073004722595,
189
+ "eval_precision": 0.8929889298892989,
190
+ "eval_recall": 0.8066666666666666,
191
+ "eval_runtime": 244.8477,
192
+ "eval_samples_per_second": 12.253,
193
+ "eval_steps_per_second": 1.532,
194
+ "step": 350
195
+ },
196
+ {
197
+ "epoch": 0.22,
198
+ "learning_rate": 3.9000000000000006e-05,
199
+ "loss": 0.7179,
200
+ "step": 385
201
+ },
202
+ {
203
+ "epoch": 0.22,
204
+ "eval_accuracy": 0.795,
205
+ "eval_f1": 0.76409666283084,
206
+ "eval_loss": 0.6408818960189819,
207
+ "eval_precision": 0.8997289972899729,
208
+ "eval_recall": 0.664,
209
+ "eval_runtime": 244.8569,
210
+ "eval_samples_per_second": 12.252,
211
+ "eval_steps_per_second": 1.532,
212
+ "step": 385
213
+ },
214
+ {
215
+ "epoch": 0.24,
216
+ "learning_rate": 3.8e-05,
217
+ "loss": 0.7823,
218
+ "step": 420
219
+ },
220
+ {
221
+ "epoch": 0.24,
222
+ "eval_accuracy": 0.821,
223
+ "eval_f1": 0.7869892899643,
224
+ "eval_loss": 0.4732283651828766,
225
+ "eval_precision": 0.9715964740450539,
226
+ "eval_recall": 0.6613333333333333,
227
+ "eval_runtime": 244.9263,
228
+ "eval_samples_per_second": 12.249,
229
+ "eval_steps_per_second": 1.531,
230
+ "step": 420
231
+ },
232
+ {
233
+ "epoch": 0.26,
234
+ "learning_rate": 3.7e-05,
235
+ "loss": 0.2816,
236
+ "step": 455
237
+ },
238
+ {
239
+ "epoch": 0.26,
240
+ "eval_accuracy": 0.89,
241
+ "eval_f1": 0.8825622775800712,
242
+ "eval_loss": 0.5548559427261353,
243
+ "eval_precision": 0.9465648854961832,
244
+ "eval_recall": 0.8266666666666667,
245
+ "eval_runtime": 245.0027,
246
+ "eval_samples_per_second": 12.245,
247
+ "eval_steps_per_second": 1.531,
248
+ "step": 455
249
+ },
250
+ {
251
+ "epoch": 0.28,
252
+ "learning_rate": 3.6e-05,
253
+ "loss": 0.3043,
254
+ "step": 490
255
+ },
256
+ {
257
+ "epoch": 0.28,
258
+ "eval_accuracy": 0.8976666666666666,
259
+ "eval_f1": 0.8971524288107202,
260
+ "eval_loss": 0.48737743496894836,
261
+ "eval_precision": 0.9016835016835016,
262
+ "eval_recall": 0.8926666666666667,
263
+ "eval_runtime": 245.4898,
264
+ "eval_samples_per_second": 12.22,
265
+ "eval_steps_per_second": 1.528,
266
+ "step": 490
267
+ },
268
+ {
269
+ "epoch": 0.3,
270
+ "learning_rate": 3.5e-05,
271
+ "loss": 0.8005,
272
+ "step": 525
273
+ },
274
+ {
275
+ "epoch": 0.3,
276
+ "eval_accuracy": 0.8443333333333334,
277
+ "eval_f1": 0.8613831997625407,
278
+ "eval_loss": 0.899199366569519,
279
+ "eval_precision": 0.7763509898341359,
280
+ "eval_recall": 0.9673333333333334,
281
+ "eval_runtime": 245.655,
282
+ "eval_samples_per_second": 12.212,
283
+ "eval_steps_per_second": 1.527,
284
+ "step": 525
285
+ },
286
+ {
287
+ "epoch": 0.32,
288
+ "learning_rate": 3.4000000000000007e-05,
289
+ "loss": 0.5206,
290
+ "step": 560
291
+ },
292
+ {
293
+ "epoch": 0.32,
294
+ "eval_accuracy": 0.881,
295
+ "eval_f1": 0.8879824286162535,
296
+ "eval_loss": 0.5689557194709778,
297
+ "eval_precision": 0.8387670420865442,
298
+ "eval_recall": 0.9433333333333334,
299
+ "eval_runtime": 245.8808,
300
+ "eval_samples_per_second": 12.201,
301
+ "eval_steps_per_second": 1.525,
302
+ "step": 560
303
+ },
304
+ {
305
+ "epoch": 0.34,
306
+ "learning_rate": 3.3e-05,
307
+ "loss": 0.2982,
308
+ "step": 595
309
+ },
310
+ {
311
+ "epoch": 0.34,
312
+ "eval_accuracy": 0.8383333333333334,
313
+ "eval_f1": 0.8556977090151742,
314
+ "eval_loss": 1.3064663410186768,
315
+ "eval_precision": 0.7727028479312198,
316
+ "eval_recall": 0.9586666666666667,
317
+ "eval_runtime": 244.8259,
318
+ "eval_samples_per_second": 12.254,
319
+ "eval_steps_per_second": 1.532,
320
+ "step": 595
321
+ },
322
+ {
323
+ "epoch": 0.36,
324
+ "learning_rate": 3.2000000000000005e-05,
325
+ "loss": 1.159,
326
+ "step": 630
327
+ },
328
+ {
329
+ "epoch": 0.36,
330
+ "eval_accuracy": 0.8866666666666667,
331
+ "eval_f1": 0.8924731182795699,
332
+ "eval_loss": 0.6431537866592407,
333
+ "eval_precision": 0.8489771359807461,
334
+ "eval_recall": 0.9406666666666667,
335
+ "eval_runtime": 244.8113,
336
+ "eval_samples_per_second": 12.254,
337
+ "eval_steps_per_second": 1.532,
338
+ "step": 630
339
+ },
340
+ {
341
+ "epoch": 0.38,
342
+ "learning_rate": 3.1e-05,
343
+ "loss": 0.4328,
344
+ "step": 665
345
+ },
346
+ {
347
+ "epoch": 0.38,
348
+ "eval_accuracy": 0.8996666666666666,
349
+ "eval_f1": 0.9056130448416432,
350
+ "eval_loss": 0.4550739824771881,
351
+ "eval_precision": 0.8549437537004144,
352
+ "eval_recall": 0.9626666666666667,
353
+ "eval_runtime": 250.1284,
354
+ "eval_samples_per_second": 11.994,
355
+ "eval_steps_per_second": 1.499,
356
+ "step": 665
357
+ },
358
+ {
359
+ "epoch": 0.4,
360
+ "learning_rate": 3e-05,
361
+ "loss": 0.4249,
362
+ "step": 700
363
+ },
364
+ {
365
+ "epoch": 0.4,
366
+ "eval_accuracy": 0.8913333333333333,
367
+ "eval_f1": 0.8823953823953824,
368
+ "eval_loss": 0.40748831629753113,
369
+ "eval_precision": 0.9614779874213837,
370
+ "eval_recall": 0.8153333333333334,
371
+ "eval_runtime": 244.9069,
372
+ "eval_samples_per_second": 12.25,
373
+ "eval_steps_per_second": 1.531,
374
+ "step": 700
375
+ },
376
+ {
377
+ "epoch": 0.42,
378
+ "learning_rate": 2.9e-05,
379
+ "loss": 0.435,
380
+ "step": 735
381
+ },
382
+ {
383
+ "epoch": 0.42,
384
+ "eval_accuracy": 0.9173333333333333,
385
+ "eval_f1": 0.9194805194805196,
386
+ "eval_loss": 0.28212666511535645,
387
+ "eval_precision": 0.8962025316455696,
388
+ "eval_recall": 0.944,
389
+ "eval_runtime": 247.2532,
390
+ "eval_samples_per_second": 12.133,
391
+ "eval_steps_per_second": 1.517,
392
+ "step": 735
393
+ },
394
+ {
395
+ "epoch": 0.44,
396
+ "learning_rate": 2.8000000000000003e-05,
397
+ "loss": 0.2909,
398
+ "step": 770
399
+ },
400
+ {
401
+ "epoch": 0.44,
402
+ "eval_accuracy": 0.9186666666666666,
403
+ "eval_f1": 0.9155124653739612,
404
+ "eval_loss": 0.2652963101863861,
405
+ "eval_precision": 0.952449567723343,
406
+ "eval_recall": 0.8813333333333333,
407
+ "eval_runtime": 244.8465,
408
+ "eval_samples_per_second": 12.253,
409
+ "eval_steps_per_second": 1.532,
410
+ "step": 770
411
+ },
412
+ {
413
+ "epoch": 0.46,
414
+ "learning_rate": 2.7000000000000002e-05,
415
+ "loss": 0.2164,
416
+ "step": 805
417
+ },
418
+ {
419
+ "epoch": 0.46,
420
+ "eval_accuracy": 0.908,
421
+ "eval_f1": 0.911651728553137,
422
+ "eval_loss": 0.41052377223968506,
423
+ "eval_precision": 0.8768472906403941,
424
+ "eval_recall": 0.9493333333333334,
425
+ "eval_runtime": 244.9871,
426
+ "eval_samples_per_second": 12.246,
427
+ "eval_steps_per_second": 1.531,
428
+ "step": 805
429
+ },
430
+ {
431
+ "epoch": 0.48,
432
+ "learning_rate": 2.6000000000000002e-05,
433
+ "loss": 0.2741,
434
+ "step": 840
435
+ },
436
+ {
437
+ "epoch": 0.48,
438
+ "eval_accuracy": 0.9086666666666666,
439
+ "eval_f1": 0.9023521026372059,
440
+ "eval_loss": 0.35454556345939636,
441
+ "eval_precision": 0.9693721286370597,
442
+ "eval_recall": 0.844,
443
+ "eval_runtime": 245.5305,
444
+ "eval_samples_per_second": 12.218,
445
+ "eval_steps_per_second": 1.527,
446
+ "step": 840
447
+ },
448
+ {
449
+ "epoch": 0.5,
450
+ "learning_rate": 2.5e-05,
451
+ "loss": 0.3406,
452
+ "step": 875
453
+ },
454
+ {
455
+ "epoch": 0.5,
456
+ "eval_accuracy": 0.9306666666666666,
457
+ "eval_f1": 0.9311258278145697,
458
+ "eval_loss": 0.2322322428226471,
459
+ "eval_precision": 0.925,
460
+ "eval_recall": 0.9373333333333334,
461
+ "eval_runtime": 244.978,
462
+ "eval_samples_per_second": 12.246,
463
+ "eval_steps_per_second": 1.531,
464
+ "step": 875
465
+ },
466
+ {
467
+ "epoch": 0.52,
468
+ "learning_rate": 2.4e-05,
469
+ "loss": 0.2471,
470
+ "step": 910
471
+ },
472
+ {
473
+ "epoch": 0.52,
474
+ "eval_accuracy": 0.9176666666666666,
475
+ "eval_f1": 0.9146804835924007,
476
+ "eval_loss": 0.3999188542366028,
477
+ "eval_precision": 0.9491039426523298,
478
+ "eval_recall": 0.8826666666666667,
479
+ "eval_runtime": 246.19,
480
+ "eval_samples_per_second": 12.186,
481
+ "eval_steps_per_second": 1.523,
482
+ "step": 910
483
+ },
484
+ {
485
+ "epoch": 0.54,
486
+ "learning_rate": 2.3000000000000003e-05,
487
+ "loss": 0.4955,
488
+ "step": 945
489
+ },
490
+ {
491
+ "epoch": 0.54,
492
+ "eval_accuracy": 0.8633333333333333,
493
+ "eval_f1": 0.844106463878327,
494
+ "eval_loss": 0.5945030450820923,
495
+ "eval_precision": 0.9823008849557522,
496
+ "eval_recall": 0.74,
497
+ "eval_runtime": 245.9264,
498
+ "eval_samples_per_second": 12.199,
499
+ "eval_steps_per_second": 1.525,
500
+ "step": 945
501
+ },
502
+ {
503
+ "epoch": 0.56,
504
+ "learning_rate": 2.2000000000000003e-05,
505
+ "loss": 0.3085,
506
+ "step": 980
507
+ },
508
+ {
509
+ "epoch": 0.56,
510
+ "eval_accuracy": 0.9136666666666666,
511
+ "eval_f1": 0.908641975308642,
512
+ "eval_loss": 0.39902010560035706,
513
+ "eval_precision": 0.9647940074906367,
514
+ "eval_recall": 0.8586666666666667,
515
+ "eval_runtime": 245.3453,
516
+ "eval_samples_per_second": 12.228,
517
+ "eval_steps_per_second": 1.528,
518
+ "step": 980
519
+ },
520
+ {
521
+ "epoch": 0.58,
522
+ "learning_rate": 2.1e-05,
523
+ "loss": 0.513,
524
+ "step": 1015
525
+ },
526
+ {
527
+ "epoch": 0.58,
528
+ "eval_accuracy": 0.9236666666666666,
529
+ "eval_f1": 0.9236921026324558,
530
+ "eval_loss": 0.21340703964233398,
531
+ "eval_precision": 0.9233844103930713,
532
+ "eval_recall": 0.924,
533
+ "eval_runtime": 244.8648,
534
+ "eval_samples_per_second": 12.252,
535
+ "eval_steps_per_second": 1.531,
536
+ "step": 1015
537
+ },
538
+ {
539
+ "epoch": 0.6,
540
+ "learning_rate": 2e-05,
541
+ "loss": 0.2576,
542
+ "step": 1050
543
+ },
544
+ {
545
+ "epoch": 0.6,
546
+ "eval_accuracy": 0.9283333333333333,
547
+ "eval_f1": 0.9271926854046733,
548
+ "eval_loss": 0.30752047896385193,
549
+ "eval_precision": 0.9421885753613214,
550
+ "eval_recall": 0.9126666666666666,
551
+ "eval_runtime": 319.7381,
552
+ "eval_samples_per_second": 9.383,
553
+ "eval_steps_per_second": 1.173,
554
+ "step": 1050
555
+ },
556
+ {
557
+ "epoch": 0.62,
558
+ "learning_rate": 1.9e-05,
559
+ "loss": 0.3558,
560
+ "step": 1085
561
+ },
562
+ {
563
+ "epoch": 0.62,
564
+ "eval_accuracy": 0.9276666666666666,
565
+ "eval_f1": 0.9297961824652217,
566
+ "eval_loss": 0.24874693155288696,
567
+ "eval_precision": 0.9032055311125079,
568
+ "eval_recall": 0.958,
569
+ "eval_runtime": 245.9624,
570
+ "eval_samples_per_second": 12.197,
571
+ "eval_steps_per_second": 1.525,
572
+ "step": 1085
573
+ },
574
+ {
575
+ "epoch": 0.64,
576
+ "learning_rate": 1.8e-05,
577
+ "loss": 0.2618,
578
+ "step": 1120
579
+ },
580
+ {
581
+ "epoch": 0.64,
582
+ "eval_accuracy": 0.9396666666666667,
583
+ "eval_f1": 0.9407528641571195,
584
+ "eval_loss": 0.3159142732620239,
585
+ "eval_precision": 0.9241157556270096,
586
+ "eval_recall": 0.958,
587
+ "eval_runtime": 245.9065,
588
+ "eval_samples_per_second": 12.2,
589
+ "eval_steps_per_second": 1.525,
590
+ "step": 1120
591
+ },
592
+ {
593
+ "epoch": 0.66,
594
+ "learning_rate": 1.7000000000000003e-05,
595
+ "loss": 0.2992,
596
+ "step": 1155
597
+ },
598
+ {
599
+ "epoch": 0.66,
600
+ "eval_accuracy": 0.9313333333333333,
601
+ "eval_f1": 0.9339320076972418,
602
+ "eval_loss": 0.33460330963134766,
603
+ "eval_precision": 0.899876390605686,
604
+ "eval_recall": 0.9706666666666667,
605
+ "eval_runtime": 245.128,
606
+ "eval_samples_per_second": 12.239,
607
+ "eval_steps_per_second": 1.53,
608
+ "step": 1155
609
+ },
610
+ {
611
+ "epoch": 0.68,
612
+ "learning_rate": 1.6000000000000003e-05,
613
+ "loss": 0.2474,
614
+ "step": 1190
615
+ },
616
+ {
617
+ "epoch": 0.68,
618
+ "eval_accuracy": 0.9346666666666666,
619
+ "eval_f1": 0.9332879509870661,
620
+ "eval_loss": 0.265165776014328,
621
+ "eval_precision": 0.9534075104311543,
622
+ "eval_recall": 0.914,
623
+ "eval_runtime": 245.8947,
624
+ "eval_samples_per_second": 12.2,
625
+ "eval_steps_per_second": 1.525,
626
+ "step": 1190
627
+ },
628
+ {
629
+ "epoch": 0.7,
630
+ "learning_rate": 1.5e-05,
631
+ "loss": 0.3008,
632
+ "step": 1225
633
+ },
634
+ {
635
+ "epoch": 0.7,
636
+ "eval_accuracy": 0.9423333333333334,
637
+ "eval_f1": 0.9421211107393778,
638
+ "eval_loss": 0.22882609069347382,
639
+ "eval_precision": 0.9456010745466756,
640
+ "eval_recall": 0.9386666666666666,
641
+ "eval_runtime": 245.6581,
642
+ "eval_samples_per_second": 12.212,
643
+ "eval_steps_per_second": 1.527,
644
+ "step": 1225
645
+ },
646
+ {
647
+ "epoch": 0.72,
648
+ "learning_rate": 1.4000000000000001e-05,
649
+ "loss": 0.2605,
650
+ "step": 1260
651
+ },
652
+ {
653
+ "epoch": 0.72,
654
+ "eval_accuracy": 0.9256666666666666,
655
+ "eval_f1": 0.9292288162488098,
656
+ "eval_loss": 0.3908889591693878,
657
+ "eval_precision": 0.8867353119321624,
658
+ "eval_recall": 0.976,
659
+ "eval_runtime": 246.273,
660
+ "eval_samples_per_second": 12.182,
661
+ "eval_steps_per_second": 1.523,
662
+ "step": 1260
663
+ },
664
+ {
665
+ "epoch": 0.74,
666
+ "learning_rate": 1.3000000000000001e-05,
667
+ "loss": 0.2565,
668
+ "step": 1295
669
+ },
670
+ {
671
+ "epoch": 0.74,
672
+ "eval_accuracy": 0.9313333333333333,
673
+ "eval_f1": 0.9340588988476314,
674
+ "eval_loss": 0.39725252985954285,
675
+ "eval_precision": 0.8983990147783252,
676
+ "eval_recall": 0.9726666666666667,
677
+ "eval_runtime": 245.9637,
678
+ "eval_samples_per_second": 12.197,
679
+ "eval_steps_per_second": 1.525,
680
+ "step": 1295
681
+ },
682
+ {
683
+ "epoch": 0.76,
684
+ "learning_rate": 1.2e-05,
685
+ "loss": 0.3269,
686
+ "step": 1330
687
+ },
688
+ {
689
+ "epoch": 0.76,
690
+ "eval_accuracy": 0.9373333333333334,
691
+ "eval_f1": 0.936141304347826,
692
+ "eval_loss": 0.2685074806213379,
693
+ "eval_precision": 0.9542936288088643,
694
+ "eval_recall": 0.9186666666666666,
695
+ "eval_runtime": 245.6322,
696
+ "eval_samples_per_second": 12.213,
697
+ "eval_steps_per_second": 1.527,
698
+ "step": 1330
699
+ },
700
+ {
701
+ "epoch": 0.78,
702
+ "learning_rate": 1.1000000000000001e-05,
703
+ "loss": 0.2149,
704
+ "step": 1365
705
+ },
706
+ {
707
+ "epoch": 0.78,
708
+ "eval_accuracy": 0.934,
709
+ "eval_f1": 0.931582584657913,
710
+ "eval_loss": 0.26127538084983826,
711
+ "eval_precision": 0.9670014347202296,
712
+ "eval_recall": 0.8986666666666666,
713
+ "eval_runtime": 244.9705,
714
+ "eval_samples_per_second": 12.246,
715
+ "eval_steps_per_second": 1.531,
716
+ "step": 1365
717
+ },
718
+ {
719
+ "epoch": 0.8,
720
+ "learning_rate": 1e-05,
721
+ "loss": 0.204,
722
+ "step": 1400
723
+ },
724
+ {
725
+ "epoch": 0.8,
726
+ "eval_accuracy": 0.944,
727
+ "eval_f1": 0.9432048681541583,
728
+ "eval_loss": 0.22753384709358215,
729
+ "eval_precision": 0.9567901234567902,
730
+ "eval_recall": 0.93,
731
+ "eval_runtime": 246.146,
732
+ "eval_samples_per_second": 12.188,
733
+ "eval_steps_per_second": 1.523,
734
+ "step": 1400
735
+ },
736
+ {
737
+ "epoch": 0.82,
738
+ "learning_rate": 9e-06,
739
+ "loss": 0.165,
740
+ "step": 1435
741
+ },
742
+ {
743
+ "epoch": 0.82,
744
+ "eval_accuracy": 0.9433333333333334,
745
+ "eval_f1": 0.9422946367956553,
746
+ "eval_loss": 0.22660386562347412,
747
+ "eval_precision": 0.9598893499308437,
748
+ "eval_recall": 0.9253333333333333,
749
+ "eval_runtime": 244.7679,
750
+ "eval_samples_per_second": 12.257,
751
+ "eval_steps_per_second": 1.532,
752
+ "step": 1435
753
+ },
754
+ {
755
+ "epoch": 0.84,
756
+ "learning_rate": 8.000000000000001e-06,
757
+ "loss": 0.2662,
758
+ "step": 1470
759
+ },
760
+ {
761
+ "epoch": 0.84,
762
+ "eval_accuracy": 0.938,
763
+ "eval_f1": 0.9363449691991785,
764
+ "eval_loss": 0.2438994199037552,
765
+ "eval_precision": 0.9620253164556962,
766
+ "eval_recall": 0.912,
767
+ "eval_runtime": 246.2921,
768
+ "eval_samples_per_second": 12.181,
769
+ "eval_steps_per_second": 1.523,
770
+ "step": 1470
771
+ },
772
+ {
773
+ "epoch": 0.86,
774
+ "learning_rate": 7.000000000000001e-06,
775
+ "loss": 0.1704,
776
+ "step": 1505
777
+ },
778
+ {
779
+ "epoch": 0.86,
780
+ "eval_accuracy": 0.9446666666666667,
781
+ "eval_f1": 0.9449966865473823,
782
+ "eval_loss": 0.24109722673892975,
783
+ "eval_precision": 0.9393939393939394,
784
+ "eval_recall": 0.9506666666666667,
785
+ "eval_runtime": 244.6596,
786
+ "eval_samples_per_second": 12.262,
787
+ "eval_steps_per_second": 1.533,
788
+ "step": 1505
789
+ },
790
+ {
791
+ "epoch": 0.88,
792
+ "learning_rate": 6e-06,
793
+ "loss": 0.1694,
794
+ "step": 1540
795
+ },
796
+ {
797
+ "epoch": 0.88,
798
+ "eval_accuracy": 0.9423333333333334,
799
+ "eval_f1": 0.9411364409663151,
800
+ "eval_loss": 0.24637927114963531,
801
+ "eval_precision": 0.9610840861709521,
802
+ "eval_recall": 0.922,
803
+ "eval_runtime": 246.6002,
804
+ "eval_samples_per_second": 12.165,
805
+ "eval_steps_per_second": 1.521,
806
+ "step": 1540
807
+ },
808
+ {
809
+ "epoch": 0.9,
810
+ "learning_rate": 5e-06,
811
+ "loss": 0.2994,
812
+ "step": 1575
813
+ },
814
+ {
815
+ "epoch": 0.9,
816
+ "eval_accuracy": 0.947,
817
+ "eval_f1": 0.9469469469469469,
818
+ "eval_loss": 0.22698351740837097,
819
+ "eval_precision": 0.9478957915831663,
820
+ "eval_recall": 0.946,
821
+ "eval_runtime": 244.8716,
822
+ "eval_samples_per_second": 12.251,
823
+ "eval_steps_per_second": 1.531,
824
+ "step": 1575
825
+ },
826
+ {
827
+ "epoch": 0.92,
828
+ "learning_rate": 4.000000000000001e-06,
829
+ "loss": 0.1833,
830
+ "step": 1610
831
+ },
832
+ {
833
+ "epoch": 0.92,
834
+ "eval_accuracy": 0.9443333333333334,
835
+ "eval_f1": 0.9438655462184874,
836
+ "eval_loss": 0.23095431923866272,
837
+ "eval_precision": 0.951864406779661,
838
+ "eval_recall": 0.936,
839
+ "eval_runtime": 245.8383,
840
+ "eval_samples_per_second": 12.203,
841
+ "eval_steps_per_second": 1.525,
842
+ "step": 1610
843
+ },
844
+ {
845
+ "epoch": 0.94,
846
+ "learning_rate": 3e-06,
847
+ "loss": 0.2646,
848
+ "step": 1645
849
+ },
850
+ {
851
+ "epoch": 0.94,
852
+ "eval_accuracy": 0.9476666666666667,
853
+ "eval_f1": 0.9484400656814449,
854
+ "eval_loss": 0.27593639492988586,
855
+ "eval_precision": 0.9346278317152104,
856
+ "eval_recall": 0.9626666666666667,
857
+ "eval_runtime": 244.6822,
858
+ "eval_samples_per_second": 12.261,
859
+ "eval_steps_per_second": 1.533,
860
+ "step": 1645
861
+ },
862
+ {
863
+ "epoch": 0.96,
864
+ "learning_rate": 2.0000000000000003e-06,
865
+ "loss": 0.1927,
866
+ "step": 1680
867
+ },
868
+ {
869
+ "epoch": 0.96,
870
+ "eval_accuracy": 0.949,
871
+ "eval_f1": 0.9487437185929648,
872
+ "eval_loss": 0.2200535088777542,
873
+ "eval_precision": 0.9535353535353536,
874
+ "eval_recall": 0.944,
875
+ "eval_runtime": 245.0433,
876
+ "eval_samples_per_second": 12.243,
877
+ "eval_steps_per_second": 1.53,
878
+ "step": 1680
879
+ },
880
+ {
881
+ "epoch": 0.98,
882
+ "learning_rate": 1.0000000000000002e-06,
883
+ "loss": 0.2153,
884
+ "step": 1715
885
+ },
886
+ {
887
+ "epoch": 0.98,
888
+ "eval_accuracy": 0.948,
889
+ "eval_f1": 0.9477911646586344,
890
+ "eval_loss": 0.2146720141172409,
891
+ "eval_precision": 0.9516129032258065,
892
+ "eval_recall": 0.944,
893
+ "eval_runtime": 246.1882,
894
+ "eval_samples_per_second": 12.186,
895
+ "eval_steps_per_second": 1.523,
896
+ "step": 1715
897
+ },
898
+ {
899
+ "epoch": 1.0,
900
+ "learning_rate": 0.0,
901
+ "loss": 0.1213,
902
+ "step": 1750
903
+ },
904
+ {
905
+ "epoch": 1.0,
906
+ "eval_accuracy": 0.948,
907
+ "eval_f1": 0.9478957915831663,
908
+ "eval_loss": 0.21715900301933289,
909
+ "eval_precision": 0.9497991967871486,
910
+ "eval_recall": 0.946,
911
+ "eval_runtime": 245.0021,
912
+ "eval_samples_per_second": 12.245,
913
+ "eval_steps_per_second": 1.531,
914
+ "step": 1750
915
+ }
916
+ ],
917
+ "max_steps": 1750,
918
+ "num_train_epochs": 1,
919
+ "total_flos": 5.1979933974528e+16,
920
+ "trial_name": null,
921
+ "trial_params": null
922
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8f5066a1aa6c965aa1838458494222c8e72724c8035db925110310fd8b651fd
3
+ size 3451