hongming commited on
Commit
e63bd02
·
verified ·
1 Parent(s): 67272ff

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - loss:CosineSimilarityLoss
10
+ base_model: distilbert/distilbert-base-uncased
11
+ metrics:
12
+ - pearson_cosine
13
+ - spearman_cosine
14
+ - pearson_manhattan
15
+ - spearman_manhattan
16
+ - pearson_euclidean
17
+ - spearman_euclidean
18
+ - pearson_dot
19
+ - spearman_dot
20
+ - pearson_max
21
+ - spearman_max
22
+ widget:
23
+ - source_sentence: A plane in the sky.
24
+ sentences:
25
+ - Two airplanes in the sky.
26
+ - A man plays an acoustic guitar.
27
+ - The small dog protects its owner.
28
+ - source_sentence: A man jumping rope
29
+ sentences:
30
+ - A man climbs a rope.
31
+ - A doctor prescribes a medicine.
32
+ - A woman is playing the flute.
33
+ - source_sentence: Women are dancing.
34
+ sentences:
35
+ - A woman is dancing.
36
+ - A small dog is laying on a bed.
37
+ - A dog is carrying a man in a canoe.
38
+ - source_sentence: A woman is dancing.
39
+ sentences:
40
+ - A man is dancing.
41
+ - A man is playing an instrument.
42
+ - A man is slicing a tomato.
43
+ - source_sentence: A plane is landing.
44
+ sentences:
45
+ - A animated airplane is landing.
46
+ - A woman is applying eye shadow.
47
+ - A dog is chasing cows.
48
+ pipeline_tag: sentence-similarity
49
+ model-index:
50
+ - name: SentenceTransformer based on distilbert/distilbert-base-uncased
51
+ results:
52
+ - task:
53
+ type: semantic-similarity
54
+ name: Semantic Similarity
55
+ dataset:
56
+ name: sts test
57
+ type: sts-test
58
+ metrics:
59
+ - type: pearson_cosine
60
+ value: 0.8414001518049624
61
+ name: Pearson Cosine
62
+ - type: spearman_cosine
63
+ value: 0.8418428302895791
64
+ name: Spearman Cosine
65
+ - type: pearson_manhattan
66
+ value: 0.8304127037688629
67
+ name: Pearson Manhattan
68
+ - type: spearman_manhattan
69
+ value: 0.8295567787464936
70
+ name: Spearman Manhattan
71
+ - type: pearson_euclidean
72
+ value: 0.8302418503614886
73
+ name: Pearson Euclidean
74
+ - type: spearman_euclidean
75
+ value: 0.8297826805281623
76
+ name: Spearman Euclidean
77
+ - type: pearson_dot
78
+ value: 0.7576090715318079
79
+ name: Pearson Dot
80
+ - type: spearman_dot
81
+ value: 0.7556546633999934
82
+ name: Spearman Dot
83
+ - type: pearson_max
84
+ value: 0.8414001518049624
85
+ name: Pearson Max
86
+ - type: spearman_max
87
+ value: 0.8418428302895791
88
+ name: Spearman Max
89
+ ---
90
+
91
+ # SentenceTransformer based on distilbert/distilbert-base-uncased
92
+
93
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
94
+
95
+ ## Model Details
96
+
97
+ ### Model Description
98
+ - **Model Type:** Sentence Transformer
99
+ - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
100
+ - **Maximum Sequence Length:** 512 tokens
101
+ - **Output Dimensionality:** 768 tokens
102
+ - **Similarity Function:** Cosine Similarity
103
+ - **Training Dataset:**
104
+ - [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
105
+ - **Language:** en
106
+ <!-- - **License:** Unknown -->
107
+
108
+ ### Model Sources
109
+
110
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
111
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
112
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
113
+
114
+ ### Full Model Architecture
115
+
116
+ ```
117
+ SentenceTransformer(
118
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
119
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
120
+ )
121
+ ```
122
+
123
+ ## Usage
124
+
125
+ ### Direct Usage (Sentence Transformers)
126
+
127
+ First install the Sentence Transformers library:
128
+
129
+ ```bash
130
+ pip install -U sentence-transformers
131
+ ```
132
+
133
+ Then you can load this model and run inference.
134
+ ```python
135
+ from sentence_transformers import SentenceTransformer
136
+
137
+ # Download from the 🤗 Hub
138
+ model = SentenceTransformer("hongming/distilbert-base-uncased-sts")
139
+ # Run inference
140
+ sentences = [
141
+ 'A plane is landing.',
142
+ 'A animated airplane is landing.',
143
+ 'A woman is applying eye shadow.',
144
+ ]
145
+ embeddings = model.encode(sentences)
146
+ print(embeddings.shape)
147
+ # [3, 768]
148
+
149
+ # Get the similarity scores for the embeddings
150
+ similarities = model.similarity(embeddings, embeddings)
151
+ print(similarities.shape)
152
+ # [3, 3]
153
+ ```
154
+
155
+ <!--
156
+ ### Direct Usage (Transformers)
157
+
158
+ <details><summary>Click to see the direct usage in Transformers</summary>
159
+
160
+ </details>
161
+ -->
162
+
163
+ <!--
164
+ ### Downstream Usage (Sentence Transformers)
165
+
166
+ You can finetune this model on your own dataset.
167
+
168
+ <details><summary>Click to expand</summary>
169
+
170
+ </details>
171
+ -->
172
+
173
+ <!--
174
+ ### Out-of-Scope Use
175
+
176
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
177
+ -->
178
+
179
+ ## Evaluation
180
+
181
+ ### Metrics
182
+
183
+ #### Semantic Similarity
184
+ * Dataset: `sts-test`
185
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
186
+
187
+ | Metric | Value |
188
+ |:--------------------|:-----------|
189
+ | pearson_cosine | 0.8414 |
190
+ | **spearman_cosine** | **0.8418** |
191
+ | pearson_manhattan | 0.8304 |
192
+ | spearman_manhattan | 0.8296 |
193
+ | pearson_euclidean | 0.8302 |
194
+ | spearman_euclidean | 0.8298 |
195
+ | pearson_dot | 0.7576 |
196
+ | spearman_dot | 0.7557 |
197
+ | pearson_max | 0.8414 |
198
+ | spearman_max | 0.8418 |
199
+
200
+ <!--
201
+ ## Bias, Risks and Limitations
202
+
203
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
204
+ -->
205
+
206
+ <!--
207
+ ### Recommendations
208
+
209
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
210
+ -->
211
+
212
+ ## Training Details
213
+
214
+ ### Training Dataset
215
+
216
+ #### sentence-transformers/stsb
217
+
218
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
219
+ * Size: 5,749 training samples
220
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
221
+ * Approximate statistics based on the first 1000 samples:
222
+ | | sentence1 | sentence2 | score |
223
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
224
+ | type | string | string | float |
225
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
226
+ * Samples:
227
+ | sentence1 | sentence2 | score |
228
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
229
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
230
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
231
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
232
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
233
+ ```json
234
+ {
235
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
236
+ }
237
+ ```
238
+
239
+ ### Evaluation Dataset
240
+
241
+ #### sentence-transformers/stsb
242
+
243
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
244
+ * Size: 1,500 evaluation samples
245
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
246
+ * Approximate statistics based on the first 1000 samples:
247
+ | | sentence1 | sentence2 | score |
248
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
249
+ | type | string | string | float |
250
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
251
+ * Samples:
252
+ | sentence1 | sentence2 | score |
253
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
254
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
255
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
256
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
257
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
258
+ ```json
259
+ {
260
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
261
+ }
262
+ ```
263
+
264
+ ### Training Hyperparameters
265
+ #### Non-Default Hyperparameters
266
+
267
+ - `per_device_train_batch_size`: 16
268
+ - `per_device_eval_batch_size`: 16
269
+ - `num_train_epochs`: 4
270
+ - `warmup_ratio`: 0.1
271
+
272
+ #### All Hyperparameters
273
+ <details><summary>Click to expand</summary>
274
+
275
+ - `overwrite_output_dir`: False
276
+ - `do_predict`: False
277
+ - `prediction_loss_only`: True
278
+ - `per_device_train_batch_size`: 16
279
+ - `per_device_eval_batch_size`: 16
280
+ - `per_gpu_train_batch_size`: None
281
+ - `per_gpu_eval_batch_size`: None
282
+ - `gradient_accumulation_steps`: 1
283
+ - `eval_accumulation_steps`: None
284
+ - `learning_rate`: 5e-05
285
+ - `weight_decay`: 0.0
286
+ - `adam_beta1`: 0.9
287
+ - `adam_beta2`: 0.999
288
+ - `adam_epsilon`: 1e-08
289
+ - `max_grad_norm`: 1.0
290
+ - `num_train_epochs`: 4
291
+ - `max_steps`: -1
292
+ - `lr_scheduler_type`: linear
293
+ - `lr_scheduler_kwargs`: {}
294
+ - `warmup_ratio`: 0.1
295
+ - `warmup_steps`: 0
296
+ - `log_level`: passive
297
+ - `log_level_replica`: warning
298
+ - `log_on_each_node`: True
299
+ - `logging_nan_inf_filter`: True
300
+ - `save_safetensors`: True
301
+ - `save_on_each_node`: False
302
+ - `save_only_model`: False
303
+ - `no_cuda`: False
304
+ - `use_cpu`: False
305
+ - `use_mps_device`: False
306
+ - `seed`: 42
307
+ - `data_seed`: None
308
+ - `jit_mode_eval`: False
309
+ - `use_ipex`: False
310
+ - `bf16`: False
311
+ - `fp16`: False
312
+ - `fp16_opt_level`: O1
313
+ - `half_precision_backend`: auto
314
+ - `bf16_full_eval`: False
315
+ - `fp16_full_eval`: False
316
+ - `tf32`: None
317
+ - `local_rank`: 0
318
+ - `ddp_backend`: None
319
+ - `tpu_num_cores`: None
320
+ - `tpu_metrics_debug`: False
321
+ - `debug`: []
322
+ - `dataloader_drop_last`: False
323
+ - `dataloader_num_workers`: 0
324
+ - `dataloader_prefetch_factor`: None
325
+ - `past_index`: -1
326
+ - `disable_tqdm`: False
327
+ - `remove_unused_columns`: True
328
+ - `label_names`: None
329
+ - `load_best_model_at_end`: False
330
+ - `ignore_data_skip`: False
331
+ - `fsdp`: []
332
+ - `fsdp_min_num_params`: 0
333
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
334
+ - `fsdp_transformer_layer_cls_to_wrap`: None
335
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
336
+ - `deepspeed`: None
337
+ - `label_smoothing_factor`: 0.0
338
+ - `optim`: adamw_torch
339
+ - `optim_args`: None
340
+ - `adafactor`: False
341
+ - `group_by_length`: False
342
+ - `length_column_name`: length
343
+ - `ddp_find_unused_parameters`: None
344
+ - `ddp_bucket_cap_mb`: None
345
+ - `ddp_broadcast_buffers`: None
346
+ - `dataloader_pin_memory`: True
347
+ - `dataloader_persistent_workers`: False
348
+ - `skip_memory_metrics`: True
349
+ - `use_legacy_prediction_loop`: False
350
+ - `push_to_hub`: False
351
+ - `resume_from_checkpoint`: None
352
+ - `hub_model_id`: None
353
+ - `hub_strategy`: every_save
354
+ - `hub_private_repo`: False
355
+ - `hub_always_push`: False
356
+ - `gradient_checkpointing`: False
357
+ - `gradient_checkpointing_kwargs`: None
358
+ - `include_inputs_for_metrics`: False
359
+ - `fp16_backend`: auto
360
+ - `push_to_hub_model_id`: None
361
+ - `push_to_hub_organization`: None
362
+ - `mp_parameters`:
363
+ - `auto_find_batch_size`: False
364
+ - `full_determinism`: False
365
+ - `torchdynamo`: None
366
+ - `ray_scope`: last
367
+ - `ddp_timeout`: 1800
368
+ - `torch_compile`: False
369
+ - `torch_compile_backend`: None
370
+ - `torch_compile_mode`: None
371
+ - `dispatch_batches`: None
372
+ - `split_batches`: None
373
+ - `include_tokens_per_second`: False
374
+ - `include_num_input_tokens_seen`: False
375
+ - `neftune_noise_alpha`: None
376
+ - `batch_sampler`: batch_sampler
377
+ - `multi_dataset_batch_sampler`: proportional
378
+
379
+ </details>
380
+
381
+ ### Training Logs
382
+ | Epoch | Step | Training Loss | sts-test_spearman_cosine |
383
+ |:------:|:----:|:-------------:|:------------------------:|
384
+ | 0.2778 | 100 | 0.0829 | - |
385
+ | 0.5556 | 200 | 0.0332 | - |
386
+ | 0.8333 | 300 | 0.0288 | - |
387
+ | 1.1111 | 400 | 0.0201 | - |
388
+ | 1.3889 | 500 | 0.014 | - |
389
+ | 1.6667 | 600 | 0.0116 | - |
390
+ | 1.9444 | 700 | 0.0127 | - |
391
+ | 2.2222 | 800 | 0.0076 | - |
392
+ | 2.5 | 900 | 0.0061 | - |
393
+ | 2.7778 | 1000 | 0.0057 | - |
394
+ | 3.0556 | 1100 | 0.0052 | - |
395
+ | 3.3333 | 1200 | 0.0037 | - |
396
+ | 3.6111 | 1300 | 0.0038 | - |
397
+ | 3.8889 | 1400 | 0.0036 | - |
398
+ | 4.0 | 1440 | - | 0.8418 |
399
+
400
+
401
+ ### Framework Versions
402
+ - Python: 3.10.12
403
+ - Sentence Transformers: 3.0.0.dev0
404
+ - Transformers: 4.38.2
405
+ - PyTorch: 2.2.0a0+git8964477
406
+ - Accelerate: 0.27.2
407
+ - Datasets: 2.19.1
408
+ - Tokenizers: 0.15.2
409
+
410
+ ## Citation
411
+
412
+ ### BibTeX
413
+
414
+ #### Sentence Transformers
415
+ ```bibtex
416
+ @inproceedings{reimers-2019-sentence-bert,
417
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
418
+ author = "Reimers, Nils and Gurevych, Iryna",
419
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
420
+ month = "11",
421
+ year = "2019",
422
+ publisher = "Association for Computational Linguistics",
423
+ url = "https://arxiv.org/abs/1908.10084",
424
+ }
425
+ ```
426
+
427
+ <!--
428
+ ## Glossary
429
+
430
+ *Clearly define terms in order to be accessible across audiences.*
431
+ -->
432
+
433
+ <!--
434
+ ## Model Card Authors
435
+
436
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
437
+ -->
438
+
439
+ <!--
440
+ ## Model Card Contact
441
+
442
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
443
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.38.2",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0.dev0",
4
+ "transformers": "4.38.2",
5
+ "pytorch": "2.2.0a0+git8964477"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a70dab6cf6d19a0146999d472aae37a16939d7a871783ce77eab8b84a235f30f
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "DistilBertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff