File size: 1,444 Bytes
fd7ccc3
 
 
 
8472bfc
 
 
 
fd7ccc3
 
95a3e56
fd7ccc3
 
 
8472bfc
 
fd7ccc3
 
 
 
 
 
 
 
 
 
8472bfc
fd7ccc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95a3e56
 
 
fd7ccc3
 
 
95a3e56
fd7ccc3
 
95a3e56
fd7ccc3
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: gemma
library_name: peft
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- alignment-handbook
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- HuggingFaceH4/deita-10k-v0-sft
- hon9kon9ize/yue-alpaca-chat
model-index:
- name: cantonese-gemma-sft-lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cantonese-gemma-sft-lora

This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the HuggingFaceH4/deita-10k-v0-sft and the hon9kon9ize/yue-alpaca-chat datasets.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1

### Training results



### Framework versions

- PEFT 0.7.1
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2