homohapiens commited on
Commit
f30a95a
·
verified ·
1 Parent(s): 7babd70

Add all files

Browse files
Files changed (11) hide show
  1. .gitattributes +4 -0
  2. coco.names +80 -0
  3. obj.names +7 -0
  4. yolov3.cfg +789 -0
  5. yolov3.weights +3 -0
  6. yolov4-csp.cfg +1279 -0
  7. yolov4-csp.weights +3 -0
  8. yolov4-tiny.cfg +294 -0
  9. yolov4-tiny.weights +3 -0
  10. yolov4.cfg +1158 -0
  11. yolov4.weights +3 -0
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ yolov3.weights filter=lfs diff=lfs merge=lfs -text
37
+ yolov4-csp.weights filter=lfs diff=lfs merge=lfs -text
38
+ yolov4-tiny.weights filter=lfs diff=lfs merge=lfs -text
39
+ yolov4.weights filter=lfs diff=lfs merge=lfs -text
coco.names ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ person
2
+ bicycle
3
+ car
4
+ motorbike
5
+ aeroplane
6
+ bus
7
+ train
8
+ truck
9
+ boat
10
+ traffic light
11
+ fire hydrant
12
+ stop sign
13
+ parking meter
14
+ bench
15
+ bird
16
+ cat
17
+ dog
18
+ horse
19
+ sheep
20
+ cow
21
+ elephant
22
+ bear
23
+ zebra
24
+ giraffe
25
+ backpack
26
+ umbrella
27
+ handbag
28
+ tie
29
+ suitcase
30
+ frisbee
31
+ skis
32
+ snowboard
33
+ sports ball
34
+ kite
35
+ baseball bat
36
+ baseball glove
37
+ skateboard
38
+ surfboard
39
+ tennis racket
40
+ bottle
41
+ wine glass
42
+ cup
43
+ fork
44
+ knife
45
+ spoon
46
+ bowl
47
+ banana
48
+ apple
49
+ sandwich
50
+ orange
51
+ broccoli
52
+ carrot
53
+ hot dog
54
+ pizza
55
+ donut
56
+ cake
57
+ chair
58
+ sofa
59
+ pottedplant
60
+ bed
61
+ diningtable
62
+ toilet
63
+ tvmonitor
64
+ laptop
65
+ mouse
66
+ remote
67
+ keyboard
68
+ cell phone
69
+ microwave
70
+ oven
71
+ toaster
72
+ sink
73
+ refrigerator
74
+ book
75
+ clock
76
+ vase
77
+ scissors
78
+ teddy bear
79
+ hair drier
80
+ toothbrush
obj.names ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ ball
2
+ marker
3
+ cup
4
+ cuboid
5
+ nut
6
+ tray
7
+
yolov3.cfg ADDED
@@ -0,0 +1,789 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [net]
2
+ # Testing
3
+ # batch=1
4
+ # subdivisions=1
5
+ # Training
6
+ batch=64
7
+ subdivisions=16
8
+ width=416
9
+ height=416
10
+ channels=3
11
+ momentum=0.9
12
+ decay=0.0005
13
+ angle=0
14
+ saturation = 1.5
15
+ exposure = 1.5
16
+ hue=.1
17
+
18
+ learning_rate=0.001
19
+ burn_in=1000
20
+ max_batches = 500200
21
+ policy=steps
22
+ steps=400000,450000
23
+ scales=.1,.1
24
+
25
+ [convolutional]
26
+ batch_normalize=1
27
+ filters=32
28
+ size=3
29
+ stride=1
30
+ pad=1
31
+ activation=leaky
32
+
33
+ # Downsample
34
+
35
+ [convolutional]
36
+ batch_normalize=1
37
+ filters=64
38
+ size=3
39
+ stride=2
40
+ pad=1
41
+ activation=leaky
42
+
43
+ [convolutional]
44
+ batch_normalize=1
45
+ filters=32
46
+ size=1
47
+ stride=1
48
+ pad=1
49
+ activation=leaky
50
+
51
+ [convolutional]
52
+ batch_normalize=1
53
+ filters=64
54
+ size=3
55
+ stride=1
56
+ pad=1
57
+ activation=leaky
58
+
59
+ [shortcut]
60
+ from=-3
61
+ activation=linear
62
+
63
+ # Downsample
64
+
65
+ [convolutional]
66
+ batch_normalize=1
67
+ filters=128
68
+ size=3
69
+ stride=2
70
+ pad=1
71
+ activation=leaky
72
+
73
+ [convolutional]
74
+ batch_normalize=1
75
+ filters=64
76
+ size=1
77
+ stride=1
78
+ pad=1
79
+ activation=leaky
80
+
81
+ [convolutional]
82
+ batch_normalize=1
83
+ filters=128
84
+ size=3
85
+ stride=1
86
+ pad=1
87
+ activation=leaky
88
+
89
+ [shortcut]
90
+ from=-3
91
+ activation=linear
92
+
93
+ [convolutional]
94
+ batch_normalize=1
95
+ filters=64
96
+ size=1
97
+ stride=1
98
+ pad=1
99
+ activation=leaky
100
+
101
+ [convolutional]
102
+ batch_normalize=1
103
+ filters=128
104
+ size=3
105
+ stride=1
106
+ pad=1
107
+ activation=leaky
108
+
109
+ [shortcut]
110
+ from=-3
111
+ activation=linear
112
+
113
+ # Downsample
114
+
115
+ [convolutional]
116
+ batch_normalize=1
117
+ filters=256
118
+ size=3
119
+ stride=2
120
+ pad=1
121
+ activation=leaky
122
+
123
+ [convolutional]
124
+ batch_normalize=1
125
+ filters=128
126
+ size=1
127
+ stride=1
128
+ pad=1
129
+ activation=leaky
130
+
131
+ [convolutional]
132
+ batch_normalize=1
133
+ filters=256
134
+ size=3
135
+ stride=1
136
+ pad=1
137
+ activation=leaky
138
+
139
+ [shortcut]
140
+ from=-3
141
+ activation=linear
142
+
143
+ [convolutional]
144
+ batch_normalize=1
145
+ filters=128
146
+ size=1
147
+ stride=1
148
+ pad=1
149
+ activation=leaky
150
+
151
+ [convolutional]
152
+ batch_normalize=1
153
+ filters=256
154
+ size=3
155
+ stride=1
156
+ pad=1
157
+ activation=leaky
158
+
159
+ [shortcut]
160
+ from=-3
161
+ activation=linear
162
+
163
+ [convolutional]
164
+ batch_normalize=1
165
+ filters=128
166
+ size=1
167
+ stride=1
168
+ pad=1
169
+ activation=leaky
170
+
171
+ [convolutional]
172
+ batch_normalize=1
173
+ filters=256
174
+ size=3
175
+ stride=1
176
+ pad=1
177
+ activation=leaky
178
+
179
+ [shortcut]
180
+ from=-3
181
+ activation=linear
182
+
183
+ [convolutional]
184
+ batch_normalize=1
185
+ filters=128
186
+ size=1
187
+ stride=1
188
+ pad=1
189
+ activation=leaky
190
+
191
+ [convolutional]
192
+ batch_normalize=1
193
+ filters=256
194
+ size=3
195
+ stride=1
196
+ pad=1
197
+ activation=leaky
198
+
199
+ [shortcut]
200
+ from=-3
201
+ activation=linear
202
+
203
+
204
+ [convolutional]
205
+ batch_normalize=1
206
+ filters=128
207
+ size=1
208
+ stride=1
209
+ pad=1
210
+ activation=leaky
211
+
212
+ [convolutional]
213
+ batch_normalize=1
214
+ filters=256
215
+ size=3
216
+ stride=1
217
+ pad=1
218
+ activation=leaky
219
+
220
+ [shortcut]
221
+ from=-3
222
+ activation=linear
223
+
224
+ [convolutional]
225
+ batch_normalize=1
226
+ filters=128
227
+ size=1
228
+ stride=1
229
+ pad=1
230
+ activation=leaky
231
+
232
+ [convolutional]
233
+ batch_normalize=1
234
+ filters=256
235
+ size=3
236
+ stride=1
237
+ pad=1
238
+ activation=leaky
239
+
240
+ [shortcut]
241
+ from=-3
242
+ activation=linear
243
+
244
+ [convolutional]
245
+ batch_normalize=1
246
+ filters=128
247
+ size=1
248
+ stride=1
249
+ pad=1
250
+ activation=leaky
251
+
252
+ [convolutional]
253
+ batch_normalize=1
254
+ filters=256
255
+ size=3
256
+ stride=1
257
+ pad=1
258
+ activation=leaky
259
+
260
+ [shortcut]
261
+ from=-3
262
+ activation=linear
263
+
264
+ [convolutional]
265
+ batch_normalize=1
266
+ filters=128
267
+ size=1
268
+ stride=1
269
+ pad=1
270
+ activation=leaky
271
+
272
+ [convolutional]
273
+ batch_normalize=1
274
+ filters=256
275
+ size=3
276
+ stride=1
277
+ pad=1
278
+ activation=leaky
279
+
280
+ [shortcut]
281
+ from=-3
282
+ activation=linear
283
+
284
+ # Downsample
285
+
286
+ [convolutional]
287
+ batch_normalize=1
288
+ filters=512
289
+ size=3
290
+ stride=2
291
+ pad=1
292
+ activation=leaky
293
+
294
+ [convolutional]
295
+ batch_normalize=1
296
+ filters=256
297
+ size=1
298
+ stride=1
299
+ pad=1
300
+ activation=leaky
301
+
302
+ [convolutional]
303
+ batch_normalize=1
304
+ filters=512
305
+ size=3
306
+ stride=1
307
+ pad=1
308
+ activation=leaky
309
+
310
+ [shortcut]
311
+ from=-3
312
+ activation=linear
313
+
314
+
315
+ [convolutional]
316
+ batch_normalize=1
317
+ filters=256
318
+ size=1
319
+ stride=1
320
+ pad=1
321
+ activation=leaky
322
+
323
+ [convolutional]
324
+ batch_normalize=1
325
+ filters=512
326
+ size=3
327
+ stride=1
328
+ pad=1
329
+ activation=leaky
330
+
331
+ [shortcut]
332
+ from=-3
333
+ activation=linear
334
+
335
+
336
+ [convolutional]
337
+ batch_normalize=1
338
+ filters=256
339
+ size=1
340
+ stride=1
341
+ pad=1
342
+ activation=leaky
343
+
344
+ [convolutional]
345
+ batch_normalize=1
346
+ filters=512
347
+ size=3
348
+ stride=1
349
+ pad=1
350
+ activation=leaky
351
+
352
+ [shortcut]
353
+ from=-3
354
+ activation=linear
355
+
356
+
357
+ [convolutional]
358
+ batch_normalize=1
359
+ filters=256
360
+ size=1
361
+ stride=1
362
+ pad=1
363
+ activation=leaky
364
+
365
+ [convolutional]
366
+ batch_normalize=1
367
+ filters=512
368
+ size=3
369
+ stride=1
370
+ pad=1
371
+ activation=leaky
372
+
373
+ [shortcut]
374
+ from=-3
375
+ activation=linear
376
+
377
+ [convolutional]
378
+ batch_normalize=1
379
+ filters=256
380
+ size=1
381
+ stride=1
382
+ pad=1
383
+ activation=leaky
384
+
385
+ [convolutional]
386
+ batch_normalize=1
387
+ filters=512
388
+ size=3
389
+ stride=1
390
+ pad=1
391
+ activation=leaky
392
+
393
+ [shortcut]
394
+ from=-3
395
+ activation=linear
396
+
397
+
398
+ [convolutional]
399
+ batch_normalize=1
400
+ filters=256
401
+ size=1
402
+ stride=1
403
+ pad=1
404
+ activation=leaky
405
+
406
+ [convolutional]
407
+ batch_normalize=1
408
+ filters=512
409
+ size=3
410
+ stride=1
411
+ pad=1
412
+ activation=leaky
413
+
414
+ [shortcut]
415
+ from=-3
416
+ activation=linear
417
+
418
+
419
+ [convolutional]
420
+ batch_normalize=1
421
+ filters=256
422
+ size=1
423
+ stride=1
424
+ pad=1
425
+ activation=leaky
426
+
427
+ [convolutional]
428
+ batch_normalize=1
429
+ filters=512
430
+ size=3
431
+ stride=1
432
+ pad=1
433
+ activation=leaky
434
+
435
+ [shortcut]
436
+ from=-3
437
+ activation=linear
438
+
439
+ [convolutional]
440
+ batch_normalize=1
441
+ filters=256
442
+ size=1
443
+ stride=1
444
+ pad=1
445
+ activation=leaky
446
+
447
+ [convolutional]
448
+ batch_normalize=1
449
+ filters=512
450
+ size=3
451
+ stride=1
452
+ pad=1
453
+ activation=leaky
454
+
455
+ [shortcut]
456
+ from=-3
457
+ activation=linear
458
+
459
+ # Downsample
460
+
461
+ [convolutional]
462
+ batch_normalize=1
463
+ filters=1024
464
+ size=3
465
+ stride=2
466
+ pad=1
467
+ activation=leaky
468
+
469
+ [convolutional]
470
+ batch_normalize=1
471
+ filters=512
472
+ size=1
473
+ stride=1
474
+ pad=1
475
+ activation=leaky
476
+
477
+ [convolutional]
478
+ batch_normalize=1
479
+ filters=1024
480
+ size=3
481
+ stride=1
482
+ pad=1
483
+ activation=leaky
484
+
485
+ [shortcut]
486
+ from=-3
487
+ activation=linear
488
+
489
+ [convolutional]
490
+ batch_normalize=1
491
+ filters=512
492
+ size=1
493
+ stride=1
494
+ pad=1
495
+ activation=leaky
496
+
497
+ [convolutional]
498
+ batch_normalize=1
499
+ filters=1024
500
+ size=3
501
+ stride=1
502
+ pad=1
503
+ activation=leaky
504
+
505
+ [shortcut]
506
+ from=-3
507
+ activation=linear
508
+
509
+ [convolutional]
510
+ batch_normalize=1
511
+ filters=512
512
+ size=1
513
+ stride=1
514
+ pad=1
515
+ activation=leaky
516
+
517
+ [convolutional]
518
+ batch_normalize=1
519
+ filters=1024
520
+ size=3
521
+ stride=1
522
+ pad=1
523
+ activation=leaky
524
+
525
+ [shortcut]
526
+ from=-3
527
+ activation=linear
528
+
529
+ [convolutional]
530
+ batch_normalize=1
531
+ filters=512
532
+ size=1
533
+ stride=1
534
+ pad=1
535
+ activation=leaky
536
+
537
+ [convolutional]
538
+ batch_normalize=1
539
+ filters=1024
540
+ size=3
541
+ stride=1
542
+ pad=1
543
+ activation=leaky
544
+
545
+ [shortcut]
546
+ from=-3
547
+ activation=linear
548
+
549
+ ######################
550
+
551
+ [convolutional]
552
+ batch_normalize=1
553
+ filters=512
554
+ size=1
555
+ stride=1
556
+ pad=1
557
+ activation=leaky
558
+
559
+ [convolutional]
560
+ batch_normalize=1
561
+ size=3
562
+ stride=1
563
+ pad=1
564
+ filters=1024
565
+ activation=leaky
566
+
567
+ [convolutional]
568
+ batch_normalize=1
569
+ filters=512
570
+ size=1
571
+ stride=1
572
+ pad=1
573
+ activation=leaky
574
+
575
+ [convolutional]
576
+ batch_normalize=1
577
+ size=3
578
+ stride=1
579
+ pad=1
580
+ filters=1024
581
+ activation=leaky
582
+
583
+ [convolutional]
584
+ batch_normalize=1
585
+ filters=512
586
+ size=1
587
+ stride=1
588
+ pad=1
589
+ activation=leaky
590
+
591
+ [convolutional]
592
+ batch_normalize=1
593
+ size=3
594
+ stride=1
595
+ pad=1
596
+ filters=1024
597
+ activation=leaky
598
+
599
+ [convolutional]
600
+ size=1
601
+ stride=1
602
+ pad=1
603
+ filters=255
604
+ activation=linear
605
+
606
+
607
+ [yolo]
608
+ mask = 6,7,8
609
+ anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
610
+ classes=80
611
+ num=9
612
+ jitter=.3
613
+ ignore_thresh = .7
614
+ truth_thresh = 1
615
+ random=1
616
+
617
+
618
+ [route]
619
+ layers = -4
620
+
621
+ [convolutional]
622
+ batch_normalize=1
623
+ filters=256
624
+ size=1
625
+ stride=1
626
+ pad=1
627
+ activation=leaky
628
+
629
+ [upsample]
630
+ stride=2
631
+
632
+ [route]
633
+ layers = -1, 61
634
+
635
+
636
+
637
+ [convolutional]
638
+ batch_normalize=1
639
+ filters=256
640
+ size=1
641
+ stride=1
642
+ pad=1
643
+ activation=leaky
644
+
645
+ [convolutional]
646
+ batch_normalize=1
647
+ size=3
648
+ stride=1
649
+ pad=1
650
+ filters=512
651
+ activation=leaky
652
+
653
+ [convolutional]
654
+ batch_normalize=1
655
+ filters=256
656
+ size=1
657
+ stride=1
658
+ pad=1
659
+ activation=leaky
660
+
661
+ [convolutional]
662
+ batch_normalize=1
663
+ size=3
664
+ stride=1
665
+ pad=1
666
+ filters=512
667
+ activation=leaky
668
+
669
+ [convolutional]
670
+ batch_normalize=1
671
+ filters=256
672
+ size=1
673
+ stride=1
674
+ pad=1
675
+ activation=leaky
676
+
677
+ [convolutional]
678
+ batch_normalize=1
679
+ size=3
680
+ stride=1
681
+ pad=1
682
+ filters=512
683
+ activation=leaky
684
+
685
+ [convolutional]
686
+ size=1
687
+ stride=1
688
+ pad=1
689
+ filters=255
690
+ activation=linear
691
+
692
+
693
+ [yolo]
694
+ mask = 3,4,5
695
+ anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
696
+ classes=80
697
+ num=9
698
+ jitter=.3
699
+ ignore_thresh = .7
700
+ truth_thresh = 1
701
+ random=1
702
+
703
+
704
+
705
+ [route]
706
+ layers = -4
707
+
708
+ [convolutional]
709
+ batch_normalize=1
710
+ filters=128
711
+ size=1
712
+ stride=1
713
+ pad=1
714
+ activation=leaky
715
+
716
+ [upsample]
717
+ stride=2
718
+
719
+ [route]
720
+ layers = -1, 36
721
+
722
+
723
+
724
+ [convolutional]
725
+ batch_normalize=1
726
+ filters=128
727
+ size=1
728
+ stride=1
729
+ pad=1
730
+ activation=leaky
731
+
732
+ [convolutional]
733
+ batch_normalize=1
734
+ size=3
735
+ stride=1
736
+ pad=1
737
+ filters=256
738
+ activation=leaky
739
+
740
+ [convolutional]
741
+ batch_normalize=1
742
+ filters=128
743
+ size=1
744
+ stride=1
745
+ pad=1
746
+ activation=leaky
747
+
748
+ [convolutional]
749
+ batch_normalize=1
750
+ size=3
751
+ stride=1
752
+ pad=1
753
+ filters=256
754
+ activation=leaky
755
+
756
+ [convolutional]
757
+ batch_normalize=1
758
+ filters=128
759
+ size=1
760
+ stride=1
761
+ pad=1
762
+ activation=leaky
763
+
764
+ [convolutional]
765
+ batch_normalize=1
766
+ size=3
767
+ stride=1
768
+ pad=1
769
+ filters=256
770
+ activation=leaky
771
+
772
+ [convolutional]
773
+ size=1
774
+ stride=1
775
+ pad=1
776
+ filters=255
777
+ activation=linear
778
+
779
+
780
+ [yolo]
781
+ mask = 0,1,2
782
+ anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
783
+ classes=80
784
+ num=9
785
+ jitter=.3
786
+ ignore_thresh = .7
787
+ truth_thresh = 1
788
+ random=1
789
+
yolov3.weights ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:523e4e69e1d015393a1b0a441cef1d9c7659e3eb2d7e15f793f060a21b32f297
3
+ size 248007048
yolov4-csp.cfg ADDED
@@ -0,0 +1,1279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [net]
2
+ # Testing
3
+ #batch=1
4
+ #subdivisions=1
5
+ # Training
6
+ batch=64
7
+ subdivisions=8
8
+ width=512
9
+ height=512
10
+ channels=3
11
+ momentum=0.949
12
+ decay=0.0005
13
+ angle=0
14
+ saturation = 1.5
15
+ exposure = 1.5
16
+ hue=.1
17
+
18
+ learning_rate=0.001
19
+ burn_in=1000
20
+ max_batches = 500500
21
+ policy=steps
22
+ steps=400000,450000
23
+ scales=.1,.1
24
+
25
+ mosaic=1
26
+
27
+ letter_box=1
28
+
29
+ ema_alpha=0.9998
30
+
31
+ #optimized_memory=1
32
+
33
+ #23:104x104 54:52x52 85:26x26 104:13x13 for 416
34
+
35
+
36
+
37
+ [convolutional]
38
+ batch_normalize=1
39
+ filters=32
40
+ size=3
41
+ stride=1
42
+ pad=1
43
+ activation=mish
44
+
45
+ # Downsample
46
+
47
+ [convolutional]
48
+ batch_normalize=1
49
+ filters=64
50
+ size=3
51
+ stride=2
52
+ pad=1
53
+ activation=mish
54
+
55
+ #[convolutional]
56
+ #batch_normalize=1
57
+ #filters=64
58
+ #size=1
59
+ #stride=1
60
+ #pad=1
61
+ #activation=mish
62
+
63
+ #[route]
64
+ #layers = -2
65
+
66
+ #[convolutional]
67
+ #batch_normalize=1
68
+ #filters=64
69
+ #size=1
70
+ #stride=1
71
+ #pad=1
72
+ #activation=mish
73
+
74
+ [convolutional]
75
+ batch_normalize=1
76
+ filters=32
77
+ size=1
78
+ stride=1
79
+ pad=1
80
+ activation=mish
81
+
82
+ [convolutional]
83
+ batch_normalize=1
84
+ filters=64
85
+ size=3
86
+ stride=1
87
+ pad=1
88
+ activation=mish
89
+
90
+ [shortcut]
91
+ from=-3
92
+ activation=linear
93
+
94
+ #[convolutional]
95
+ #batch_normalize=1
96
+ #filters=64
97
+ #size=1
98
+ #stride=1
99
+ #pad=1
100
+ #activation=mish
101
+
102
+ #[route]
103
+ #layers = -1,-7
104
+
105
+ #[convolutional]
106
+ #batch_normalize=1
107
+ #filters=64
108
+ #size=1
109
+ #stride=1
110
+ #pad=1
111
+ #activation=mish
112
+
113
+ # Downsample
114
+
115
+ [convolutional]
116
+ batch_normalize=1
117
+ filters=128
118
+ size=3
119
+ stride=2
120
+ pad=1
121
+ activation=mish
122
+
123
+ [convolutional]
124
+ batch_normalize=1
125
+ filters=64
126
+ size=1
127
+ stride=1
128
+ pad=1
129
+ activation=mish
130
+
131
+ [route]
132
+ layers = -2
133
+
134
+ [convolutional]
135
+ batch_normalize=1
136
+ filters=64
137
+ size=1
138
+ stride=1
139
+ pad=1
140
+ activation=mish
141
+
142
+ [convolutional]
143
+ batch_normalize=1
144
+ filters=64
145
+ size=1
146
+ stride=1
147
+ pad=1
148
+ activation=mish
149
+
150
+ [convolutional]
151
+ batch_normalize=1
152
+ filters=64
153
+ size=3
154
+ stride=1
155
+ pad=1
156
+ activation=mish
157
+
158
+ [shortcut]
159
+ from=-3
160
+ activation=linear
161
+
162
+ [convolutional]
163
+ batch_normalize=1
164
+ filters=64
165
+ size=1
166
+ stride=1
167
+ pad=1
168
+ activation=mish
169
+
170
+ [convolutional]
171
+ batch_normalize=1
172
+ filters=64
173
+ size=3
174
+ stride=1
175
+ pad=1
176
+ activation=mish
177
+
178
+ [shortcut]
179
+ from=-3
180
+ activation=linear
181
+
182
+ [convolutional]
183
+ batch_normalize=1
184
+ filters=64
185
+ size=1
186
+ stride=1
187
+ pad=1
188
+ activation=mish
189
+
190
+ [route]
191
+ layers = -1,-10
192
+
193
+ [convolutional]
194
+ batch_normalize=1
195
+ filters=128
196
+ size=1
197
+ stride=1
198
+ pad=1
199
+ activation=mish
200
+
201
+ # Downsample
202
+
203
+ [convolutional]
204
+ batch_normalize=1
205
+ filters=256
206
+ size=3
207
+ stride=2
208
+ pad=1
209
+ activation=mish
210
+
211
+ [convolutional]
212
+ batch_normalize=1
213
+ filters=128
214
+ size=1
215
+ stride=1
216
+ pad=1
217
+ activation=mish
218
+
219
+ [route]
220
+ layers = -2
221
+
222
+ [convolutional]
223
+ batch_normalize=1
224
+ filters=128
225
+ size=1
226
+ stride=1
227
+ pad=1
228
+ activation=mish
229
+
230
+ [convolutional]
231
+ batch_normalize=1
232
+ filters=128
233
+ size=1
234
+ stride=1
235
+ pad=1
236
+ activation=mish
237
+
238
+ [convolutional]
239
+ batch_normalize=1
240
+ filters=128
241
+ size=3
242
+ stride=1
243
+ pad=1
244
+ activation=mish
245
+
246
+ [shortcut]
247
+ from=-3
248
+ activation=linear
249
+
250
+ [convolutional]
251
+ batch_normalize=1
252
+ filters=128
253
+ size=1
254
+ stride=1
255
+ pad=1
256
+ activation=mish
257
+
258
+ [convolutional]
259
+ batch_normalize=1
260
+ filters=128
261
+ size=3
262
+ stride=1
263
+ pad=1
264
+ activation=mish
265
+
266
+ [shortcut]
267
+ from=-3
268
+ activation=linear
269
+
270
+ [convolutional]
271
+ batch_normalize=1
272
+ filters=128
273
+ size=1
274
+ stride=1
275
+ pad=1
276
+ activation=mish
277
+
278
+ [convolutional]
279
+ batch_normalize=1
280
+ filters=128
281
+ size=3
282
+ stride=1
283
+ pad=1
284
+ activation=mish
285
+
286
+ [shortcut]
287
+ from=-3
288
+ activation=linear
289
+
290
+ [convolutional]
291
+ batch_normalize=1
292
+ filters=128
293
+ size=1
294
+ stride=1
295
+ pad=1
296
+ activation=mish
297
+
298
+ [convolutional]
299
+ batch_normalize=1
300
+ filters=128
301
+ size=3
302
+ stride=1
303
+ pad=1
304
+ activation=mish
305
+
306
+ [shortcut]
307
+ from=-3
308
+ activation=linear
309
+
310
+
311
+ [convolutional]
312
+ batch_normalize=1
313
+ filters=128
314
+ size=1
315
+ stride=1
316
+ pad=1
317
+ activation=mish
318
+
319
+ [convolutional]
320
+ batch_normalize=1
321
+ filters=128
322
+ size=3
323
+ stride=1
324
+ pad=1
325
+ activation=mish
326
+
327
+ [shortcut]
328
+ from=-3
329
+ activation=linear
330
+
331
+ [convolutional]
332
+ batch_normalize=1
333
+ filters=128
334
+ size=1
335
+ stride=1
336
+ pad=1
337
+ activation=mish
338
+
339
+ [convolutional]
340
+ batch_normalize=1
341
+ filters=128
342
+ size=3
343
+ stride=1
344
+ pad=1
345
+ activation=mish
346
+
347
+ [shortcut]
348
+ from=-3
349
+ activation=linear
350
+
351
+ [convolutional]
352
+ batch_normalize=1
353
+ filters=128
354
+ size=1
355
+ stride=1
356
+ pad=1
357
+ activation=mish
358
+
359
+ [convolutional]
360
+ batch_normalize=1
361
+ filters=128
362
+ size=3
363
+ stride=1
364
+ pad=1
365
+ activation=mish
366
+
367
+ [shortcut]
368
+ from=-3
369
+ activation=linear
370
+
371
+ [convolutional]
372
+ batch_normalize=1
373
+ filters=128
374
+ size=1
375
+ stride=1
376
+ pad=1
377
+ activation=mish
378
+
379
+ [convolutional]
380
+ batch_normalize=1
381
+ filters=128
382
+ size=3
383
+ stride=1
384
+ pad=1
385
+ activation=mish
386
+
387
+ [shortcut]
388
+ from=-3
389
+ activation=linear
390
+
391
+ [convolutional]
392
+ batch_normalize=1
393
+ filters=128
394
+ size=1
395
+ stride=1
396
+ pad=1
397
+ activation=mish
398
+
399
+ [route]
400
+ layers = -1,-28
401
+
402
+ [convolutional]
403
+ batch_normalize=1
404
+ filters=256
405
+ size=1
406
+ stride=1
407
+ pad=1
408
+ activation=mish
409
+
410
+ # Downsample
411
+
412
+ [convolutional]
413
+ batch_normalize=1
414
+ filters=512
415
+ size=3
416
+ stride=2
417
+ pad=1
418
+ activation=mish
419
+
420
+ [convolutional]
421
+ batch_normalize=1
422
+ filters=256
423
+ size=1
424
+ stride=1
425
+ pad=1
426
+ activation=mish
427
+
428
+ [route]
429
+ layers = -2
430
+
431
+ [convolutional]
432
+ batch_normalize=1
433
+ filters=256
434
+ size=1
435
+ stride=1
436
+ pad=1
437
+ activation=mish
438
+
439
+ [convolutional]
440
+ batch_normalize=1
441
+ filters=256
442
+ size=1
443
+ stride=1
444
+ pad=1
445
+ activation=mish
446
+
447
+ [convolutional]
448
+ batch_normalize=1
449
+ filters=256
450
+ size=3
451
+ stride=1
452
+ pad=1
453
+ activation=mish
454
+
455
+ [shortcut]
456
+ from=-3
457
+ activation=linear
458
+
459
+
460
+ [convolutional]
461
+ batch_normalize=1
462
+ filters=256
463
+ size=1
464
+ stride=1
465
+ pad=1
466
+ activation=mish
467
+
468
+ [convolutional]
469
+ batch_normalize=1
470
+ filters=256
471
+ size=3
472
+ stride=1
473
+ pad=1
474
+ activation=mish
475
+
476
+ [shortcut]
477
+ from=-3
478
+ activation=linear
479
+
480
+
481
+ [convolutional]
482
+ batch_normalize=1
483
+ filters=256
484
+ size=1
485
+ stride=1
486
+ pad=1
487
+ activation=mish
488
+
489
+ [convolutional]
490
+ batch_normalize=1
491
+ filters=256
492
+ size=3
493
+ stride=1
494
+ pad=1
495
+ activation=mish
496
+
497
+ [shortcut]
498
+ from=-3
499
+ activation=linear
500
+
501
+
502
+ [convolutional]
503
+ batch_normalize=1
504
+ filters=256
505
+ size=1
506
+ stride=1
507
+ pad=1
508
+ activation=mish
509
+
510
+ [convolutional]
511
+ batch_normalize=1
512
+ filters=256
513
+ size=3
514
+ stride=1
515
+ pad=1
516
+ activation=mish
517
+
518
+ [shortcut]
519
+ from=-3
520
+ activation=linear
521
+
522
+
523
+ [convolutional]
524
+ batch_normalize=1
525
+ filters=256
526
+ size=1
527
+ stride=1
528
+ pad=1
529
+ activation=mish
530
+
531
+ [convolutional]
532
+ batch_normalize=1
533
+ filters=256
534
+ size=3
535
+ stride=1
536
+ pad=1
537
+ activation=mish
538
+
539
+ [shortcut]
540
+ from=-3
541
+ activation=linear
542
+
543
+
544
+ [convolutional]
545
+ batch_normalize=1
546
+ filters=256
547
+ size=1
548
+ stride=1
549
+ pad=1
550
+ activation=mish
551
+
552
+ [convolutional]
553
+ batch_normalize=1
554
+ filters=256
555
+ size=3
556
+ stride=1
557
+ pad=1
558
+ activation=mish
559
+
560
+ [shortcut]
561
+ from=-3
562
+ activation=linear
563
+
564
+
565
+ [convolutional]
566
+ batch_normalize=1
567
+ filters=256
568
+ size=1
569
+ stride=1
570
+ pad=1
571
+ activation=mish
572
+
573
+ [convolutional]
574
+ batch_normalize=1
575
+ filters=256
576
+ size=3
577
+ stride=1
578
+ pad=1
579
+ activation=mish
580
+
581
+ [shortcut]
582
+ from=-3
583
+ activation=linear
584
+
585
+ [convolutional]
586
+ batch_normalize=1
587
+ filters=256
588
+ size=1
589
+ stride=1
590
+ pad=1
591
+ activation=mish
592
+
593
+ [convolutional]
594
+ batch_normalize=1
595
+ filters=256
596
+ size=3
597
+ stride=1
598
+ pad=1
599
+ activation=mish
600
+
601
+ [shortcut]
602
+ from=-3
603
+ activation=linear
604
+
605
+ [convolutional]
606
+ batch_normalize=1
607
+ filters=256
608
+ size=1
609
+ stride=1
610
+ pad=1
611
+ activation=mish
612
+
613
+ [route]
614
+ layers = -1,-28
615
+
616
+ [convolutional]
617
+ batch_normalize=1
618
+ filters=512
619
+ size=1
620
+ stride=1
621
+ pad=1
622
+ activation=mish
623
+
624
+ # Downsample
625
+
626
+ [convolutional]
627
+ batch_normalize=1
628
+ filters=1024
629
+ size=3
630
+ stride=2
631
+ pad=1
632
+ activation=mish
633
+
634
+ [convolutional]
635
+ batch_normalize=1
636
+ filters=512
637
+ size=1
638
+ stride=1
639
+ pad=1
640
+ activation=mish
641
+
642
+ [route]
643
+ layers = -2
644
+
645
+ [convolutional]
646
+ batch_normalize=1
647
+ filters=512
648
+ size=1
649
+ stride=1
650
+ pad=1
651
+ activation=mish
652
+
653
+ [convolutional]
654
+ batch_normalize=1
655
+ filters=512
656
+ size=1
657
+ stride=1
658
+ pad=1
659
+ activation=mish
660
+
661
+ [convolutional]
662
+ batch_normalize=1
663
+ filters=512
664
+ size=3
665
+ stride=1
666
+ pad=1
667
+ activation=mish
668
+
669
+ [shortcut]
670
+ from=-3
671
+ activation=linear
672
+
673
+ [convolutional]
674
+ batch_normalize=1
675
+ filters=512
676
+ size=1
677
+ stride=1
678
+ pad=1
679
+ activation=mish
680
+
681
+ [convolutional]
682
+ batch_normalize=1
683
+ filters=512
684
+ size=3
685
+ stride=1
686
+ pad=1
687
+ activation=mish
688
+
689
+ [shortcut]
690
+ from=-3
691
+ activation=linear
692
+
693
+ [convolutional]
694
+ batch_normalize=1
695
+ filters=512
696
+ size=1
697
+ stride=1
698
+ pad=1
699
+ activation=mish
700
+
701
+ [convolutional]
702
+ batch_normalize=1
703
+ filters=512
704
+ size=3
705
+ stride=1
706
+ pad=1
707
+ activation=mish
708
+
709
+ [shortcut]
710
+ from=-3
711
+ activation=linear
712
+
713
+ [convolutional]
714
+ batch_normalize=1
715
+ filters=512
716
+ size=1
717
+ stride=1
718
+ pad=1
719
+ activation=mish
720
+
721
+ [convolutional]
722
+ batch_normalize=1
723
+ filters=512
724
+ size=3
725
+ stride=1
726
+ pad=1
727
+ activation=mish
728
+
729
+ [shortcut]
730
+ from=-3
731
+ activation=linear
732
+
733
+ [convolutional]
734
+ batch_normalize=1
735
+ filters=512
736
+ size=1
737
+ stride=1
738
+ pad=1
739
+ activation=mish
740
+
741
+ [route]
742
+ layers = -1,-16
743
+
744
+ [convolutional]
745
+ batch_normalize=1
746
+ filters=1024
747
+ size=1
748
+ stride=1
749
+ pad=1
750
+ activation=mish
751
+
752
+ ##########################
753
+
754
+ [convolutional]
755
+ batch_normalize=1
756
+ filters=512
757
+ size=1
758
+ stride=1
759
+ pad=1
760
+ activation=mish
761
+
762
+ [route]
763
+ layers = -2
764
+
765
+ [convolutional]
766
+ batch_normalize=1
767
+ filters=512
768
+ size=1
769
+ stride=1
770
+ pad=1
771
+ activation=mish
772
+
773
+ [convolutional]
774
+ batch_normalize=1
775
+ size=3
776
+ stride=1
777
+ pad=1
778
+ filters=512
779
+ activation=mish
780
+
781
+ [convolutional]
782
+ batch_normalize=1
783
+ filters=512
784
+ size=1
785
+ stride=1
786
+ pad=1
787
+ activation=mish
788
+
789
+ ### SPP ###
790
+ [maxpool]
791
+ stride=1
792
+ size=5
793
+
794
+ [route]
795
+ layers=-2
796
+
797
+ [maxpool]
798
+ stride=1
799
+ size=9
800
+
801
+ [route]
802
+ layers=-4
803
+
804
+ [maxpool]
805
+ stride=1
806
+ size=13
807
+
808
+ [route]
809
+ layers=-1,-3,-5,-6
810
+ ### End SPP ###
811
+
812
+ [convolutional]
813
+ batch_normalize=1
814
+ filters=512
815
+ size=1
816
+ stride=1
817
+ pad=1
818
+ activation=mish
819
+
820
+ [convolutional]
821
+ batch_normalize=1
822
+ size=3
823
+ stride=1
824
+ pad=1
825
+ filters=512
826
+ activation=mish
827
+
828
+ [route]
829
+ layers = -1, -13
830
+
831
+ [convolutional]
832
+ batch_normalize=1
833
+ filters=512
834
+ size=1
835
+ stride=1
836
+ pad=1
837
+ activation=mish
838
+
839
+ [convolutional]
840
+ batch_normalize=1
841
+ filters=256
842
+ size=1
843
+ stride=1
844
+ pad=1
845
+ activation=mish
846
+
847
+ [upsample]
848
+ stride=2
849
+
850
+ [route]
851
+ layers = 79
852
+
853
+ [convolutional]
854
+ batch_normalize=1
855
+ filters=256
856
+ size=1
857
+ stride=1
858
+ pad=1
859
+ activation=mish
860
+
861
+ [route]
862
+ layers = -1, -3
863
+
864
+ [convolutional]
865
+ batch_normalize=1
866
+ filters=256
867
+ size=1
868
+ stride=1
869
+ pad=1
870
+ activation=mish
871
+
872
+ [convolutional]
873
+ batch_normalize=1
874
+ filters=256
875
+ size=1
876
+ stride=1
877
+ pad=1
878
+ activation=mish
879
+
880
+ [route]
881
+ layers = -2
882
+
883
+ [convolutional]
884
+ batch_normalize=1
885
+ filters=256
886
+ size=1
887
+ stride=1
888
+ pad=1
889
+ activation=mish
890
+
891
+ [convolutional]
892
+ batch_normalize=1
893
+ size=3
894
+ stride=1
895
+ pad=1
896
+ filters=256
897
+ activation=mish
898
+
899
+ [convolutional]
900
+ batch_normalize=1
901
+ filters=256
902
+ size=1
903
+ stride=1
904
+ pad=1
905
+ activation=mish
906
+
907
+ [convolutional]
908
+ batch_normalize=1
909
+ size=3
910
+ stride=1
911
+ pad=1
912
+ filters=256
913
+ activation=mish
914
+
915
+ [route]
916
+ layers = -1, -6
917
+
918
+ [convolutional]
919
+ batch_normalize=1
920
+ filters=256
921
+ size=1
922
+ stride=1
923
+ pad=1
924
+ activation=mish
925
+
926
+ [convolutional]
927
+ batch_normalize=1
928
+ filters=128
929
+ size=1
930
+ stride=1
931
+ pad=1
932
+ activation=mish
933
+
934
+ [upsample]
935
+ stride=2
936
+
937
+ [route]
938
+ layers = 48
939
+
940
+ [convolutional]
941
+ batch_normalize=1
942
+ filters=128
943
+ size=1
944
+ stride=1
945
+ pad=1
946
+ activation=mish
947
+
948
+ [route]
949
+ layers = -1, -3
950
+
951
+ [convolutional]
952
+ batch_normalize=1
953
+ filters=128
954
+ size=1
955
+ stride=1
956
+ pad=1
957
+ activation=mish
958
+
959
+ [convolutional]
960
+ batch_normalize=1
961
+ filters=128
962
+ size=1
963
+ stride=1
964
+ pad=1
965
+ activation=mish
966
+
967
+ [route]
968
+ layers = -2
969
+
970
+ [convolutional]
971
+ batch_normalize=1
972
+ filters=128
973
+ size=1
974
+ stride=1
975
+ pad=1
976
+ activation=mish
977
+
978
+ [convolutional]
979
+ batch_normalize=1
980
+ size=3
981
+ stride=1
982
+ pad=1
983
+ filters=128
984
+ activation=mish
985
+
986
+ [convolutional]
987
+ batch_normalize=1
988
+ filters=128
989
+ size=1
990
+ stride=1
991
+ pad=1
992
+ activation=mish
993
+
994
+ [convolutional]
995
+ batch_normalize=1
996
+ size=3
997
+ stride=1
998
+ pad=1
999
+ filters=128
1000
+ activation=mish
1001
+
1002
+ [route]
1003
+ layers = -1, -6
1004
+
1005
+ [convolutional]
1006
+ batch_normalize=1
1007
+ filters=128
1008
+ size=1
1009
+ stride=1
1010
+ pad=1
1011
+ activation=mish
1012
+
1013
+ ##########################
1014
+
1015
+ [convolutional]
1016
+ batch_normalize=1
1017
+ size=3
1018
+ stride=1
1019
+ pad=1
1020
+ filters=256
1021
+ activation=mish
1022
+
1023
+ [convolutional]
1024
+ size=1
1025
+ stride=1
1026
+ pad=1
1027
+ filters=255
1028
+ activation=logistic
1029
+
1030
+
1031
+ [yolo]
1032
+ mask = 0,1,2
1033
+ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1034
+ classes=80
1035
+ num=9
1036
+ jitter=.1
1037
+ scale_x_y = 2.0
1038
+ objectness_smooth=0
1039
+ ignore_thresh = .7
1040
+ truth_thresh = 1
1041
+ #random=1
1042
+ resize=1.5
1043
+ iou_thresh=0.2
1044
+ iou_normalizer=0.05
1045
+ cls_normalizer=0.5
1046
+ obj_normalizer=4.0
1047
+ iou_loss=ciou
1048
+ nms_kind=diounms
1049
+ beta_nms=0.6
1050
+ new_coords=1
1051
+ max_delta=5
1052
+
1053
+ [route]
1054
+ layers = -4
1055
+
1056
+ [convolutional]
1057
+ batch_normalize=1
1058
+ size=3
1059
+ stride=2
1060
+ pad=1
1061
+ filters=256
1062
+ activation=mish
1063
+
1064
+ [route]
1065
+ layers = -1, -20
1066
+
1067
+ [convolutional]
1068
+ batch_normalize=1
1069
+ filters=256
1070
+ size=1
1071
+ stride=1
1072
+ pad=1
1073
+ activation=mish
1074
+
1075
+ [convolutional]
1076
+ batch_normalize=1
1077
+ filters=256
1078
+ size=1
1079
+ stride=1
1080
+ pad=1
1081
+ activation=mish
1082
+
1083
+ [route]
1084
+ layers = -2
1085
+
1086
+ [convolutional]
1087
+ batch_normalize=1
1088
+ filters=256
1089
+ size=1
1090
+ stride=1
1091
+ pad=1
1092
+ activation=mish
1093
+
1094
+ [convolutional]
1095
+ batch_normalize=1
1096
+ size=3
1097
+ stride=1
1098
+ pad=1
1099
+ filters=256
1100
+ activation=mish
1101
+
1102
+ [convolutional]
1103
+ batch_normalize=1
1104
+ filters=256
1105
+ size=1
1106
+ stride=1
1107
+ pad=1
1108
+ activation=mish
1109
+
1110
+ [convolutional]
1111
+ batch_normalize=1
1112
+ size=3
1113
+ stride=1
1114
+ pad=1
1115
+ filters=256
1116
+ activation=mish
1117
+
1118
+ [route]
1119
+ layers = -1,-6
1120
+
1121
+ [convolutional]
1122
+ batch_normalize=1
1123
+ filters=256
1124
+ size=1
1125
+ stride=1
1126
+ pad=1
1127
+ activation=mish
1128
+
1129
+ [convolutional]
1130
+ batch_normalize=1
1131
+ size=3
1132
+ stride=1
1133
+ pad=1
1134
+ filters=512
1135
+ activation=mish
1136
+
1137
+ [convolutional]
1138
+ size=1
1139
+ stride=1
1140
+ pad=1
1141
+ filters=255
1142
+ activation=logistic
1143
+
1144
+
1145
+ [yolo]
1146
+ mask = 3,4,5
1147
+ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1148
+ classes=80
1149
+ num=9
1150
+ jitter=.1
1151
+ scale_x_y = 2.0
1152
+ objectness_smooth=1
1153
+ ignore_thresh = .7
1154
+ truth_thresh = 1
1155
+ #random=1
1156
+ resize=1.5
1157
+ iou_thresh=0.2
1158
+ iou_normalizer=0.05
1159
+ cls_normalizer=0.5
1160
+ obj_normalizer=1.0
1161
+ iou_loss=ciou
1162
+ nms_kind=diounms
1163
+ beta_nms=0.6
1164
+ new_coords=1
1165
+ max_delta=5
1166
+
1167
+ [route]
1168
+ layers = -4
1169
+
1170
+ [convolutional]
1171
+ batch_normalize=1
1172
+ size=3
1173
+ stride=2
1174
+ pad=1
1175
+ filters=512
1176
+ activation=mish
1177
+
1178
+ [route]
1179
+ layers = -1, -49
1180
+
1181
+ [convolutional]
1182
+ batch_normalize=1
1183
+ filters=512
1184
+ size=1
1185
+ stride=1
1186
+ pad=1
1187
+ activation=mish
1188
+
1189
+ [convolutional]
1190
+ batch_normalize=1
1191
+ filters=512
1192
+ size=1
1193
+ stride=1
1194
+ pad=1
1195
+ activation=mish
1196
+
1197
+ [route]
1198
+ layers = -2
1199
+
1200
+ [convolutional]
1201
+ batch_normalize=1
1202
+ filters=512
1203
+ size=1
1204
+ stride=1
1205
+ pad=1
1206
+ activation=mish
1207
+
1208
+ [convolutional]
1209
+ batch_normalize=1
1210
+ size=3
1211
+ stride=1
1212
+ pad=1
1213
+ filters=512
1214
+ activation=mish
1215
+
1216
+ [convolutional]
1217
+ batch_normalize=1
1218
+ filters=512
1219
+ size=1
1220
+ stride=1
1221
+ pad=1
1222
+ activation=mish
1223
+
1224
+ [convolutional]
1225
+ batch_normalize=1
1226
+ size=3
1227
+ stride=1
1228
+ pad=1
1229
+ filters=512
1230
+ activation=mish
1231
+
1232
+ [route]
1233
+ layers = -1,-6
1234
+
1235
+ [convolutional]
1236
+ batch_normalize=1
1237
+ filters=512
1238
+ size=1
1239
+ stride=1
1240
+ pad=1
1241
+ activation=mish
1242
+
1243
+ [convolutional]
1244
+ batch_normalize=1
1245
+ size=3
1246
+ stride=1
1247
+ pad=1
1248
+ filters=1024
1249
+ activation=mish
1250
+
1251
+ [convolutional]
1252
+ size=1
1253
+ stride=1
1254
+ pad=1
1255
+ filters=255
1256
+ activation=logistic
1257
+
1258
+
1259
+ [yolo]
1260
+ mask = 6,7,8
1261
+ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1262
+ classes=80
1263
+ num=9
1264
+ jitter=.1
1265
+ scale_x_y = 2.0
1266
+ objectness_smooth=1
1267
+ ignore_thresh = .7
1268
+ truth_thresh = 1
1269
+ #random=1
1270
+ resize=1.5
1271
+ iou_thresh=0.2
1272
+ iou_normalizer=0.05
1273
+ cls_normalizer=0.5
1274
+ obj_normalizer=0.4
1275
+ iou_loss=ciou
1276
+ nms_kind=diounms
1277
+ beta_nms=0.6
1278
+ new_coords=1
1279
+ max_delta=2
yolov4-csp.weights ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:019496affba568f7439e54797a1772657bb01126b707fbd93407c0b20c20dca1
3
+ size 211944840
yolov4-tiny.cfg ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [net]
2
+ # Testing
3
+ #batch=1
4
+ #subdivisions=1
5
+ # Training
6
+ batch=64
7
+ subdivisions=1
8
+ width=416
9
+ height=416
10
+ channels=3
11
+ momentum=0.9
12
+ decay=0.0005
13
+ angle=0
14
+ saturation = 1.5
15
+ exposure = 1.5
16
+ hue=.1
17
+
18
+ learning_rate=0.00261
19
+ burn_in=1000
20
+
21
+ max_batches = 2000200
22
+ policy=steps
23
+ steps=1600000,1800000
24
+ scales=.1,.1
25
+
26
+
27
+ #weights_reject_freq=1001
28
+ #ema_alpha=0.9998
29
+ #equidistant_point=1000
30
+ #num_sigmas_reject_badlabels=3
31
+ #badlabels_rejection_percentage=0.2
32
+
33
+
34
+ [convolutional]
35
+ batch_normalize=1
36
+ filters=32
37
+ size=3
38
+ stride=2
39
+ pad=1
40
+ activation=leaky
41
+
42
+ [convolutional]
43
+ batch_normalize=1
44
+ filters=64
45
+ size=3
46
+ stride=2
47
+ pad=1
48
+ activation=leaky
49
+
50
+ [convolutional]
51
+ batch_normalize=1
52
+ filters=64
53
+ size=3
54
+ stride=1
55
+ pad=1
56
+ activation=leaky
57
+
58
+ [route]
59
+ layers=-1
60
+ groups=2
61
+ group_id=1
62
+
63
+ [convolutional]
64
+ batch_normalize=1
65
+ filters=32
66
+ size=3
67
+ stride=1
68
+ pad=1
69
+ activation=leaky
70
+
71
+ [convolutional]
72
+ batch_normalize=1
73
+ filters=32
74
+ size=3
75
+ stride=1
76
+ pad=1
77
+ activation=leaky
78
+
79
+ [route]
80
+ layers = -1,-2
81
+
82
+ [convolutional]
83
+ batch_normalize=1
84
+ filters=64
85
+ size=1
86
+ stride=1
87
+ pad=1
88
+ activation=leaky
89
+
90
+ [route]
91
+ layers = -6,-1
92
+
93
+ [maxpool]
94
+ size=2
95
+ stride=2
96
+
97
+ [convolutional]
98
+ batch_normalize=1
99
+ filters=128
100
+ size=3
101
+ stride=1
102
+ pad=1
103
+ activation=leaky
104
+
105
+ [route]
106
+ layers=-1
107
+ groups=2
108
+ group_id=1
109
+
110
+ [convolutional]
111
+ batch_normalize=1
112
+ filters=64
113
+ size=3
114
+ stride=1
115
+ pad=1
116
+ activation=leaky
117
+
118
+ [convolutional]
119
+ batch_normalize=1
120
+ filters=64
121
+ size=3
122
+ stride=1
123
+ pad=1
124
+ activation=leaky
125
+
126
+ [route]
127
+ layers = -1,-2
128
+
129
+ [convolutional]
130
+ batch_normalize=1
131
+ filters=128
132
+ size=1
133
+ stride=1
134
+ pad=1
135
+ activation=leaky
136
+
137
+ [route]
138
+ layers = -6,-1
139
+
140
+ [maxpool]
141
+ size=2
142
+ stride=2
143
+
144
+ [convolutional]
145
+ batch_normalize=1
146
+ filters=256
147
+ size=3
148
+ stride=1
149
+ pad=1
150
+ activation=leaky
151
+
152
+ [route]
153
+ layers=-1
154
+ groups=2
155
+ group_id=1
156
+
157
+ [convolutional]
158
+ batch_normalize=1
159
+ filters=128
160
+ size=3
161
+ stride=1
162
+ pad=1
163
+ activation=leaky
164
+
165
+ [convolutional]
166
+ batch_normalize=1
167
+ filters=128
168
+ size=3
169
+ stride=1
170
+ pad=1
171
+ activation=leaky
172
+
173
+ [route]
174
+ layers = -1,-2
175
+
176
+ [convolutional]
177
+ batch_normalize=1
178
+ filters=256
179
+ size=1
180
+ stride=1
181
+ pad=1
182
+ activation=leaky
183
+
184
+ [route]
185
+ layers = -6,-1
186
+
187
+ [maxpool]
188
+ size=2
189
+ stride=2
190
+
191
+ [convolutional]
192
+ batch_normalize=1
193
+ filters=512
194
+ size=3
195
+ stride=1
196
+ pad=1
197
+ activation=leaky
198
+
199
+ ##################################
200
+
201
+ [convolutional]
202
+ batch_normalize=1
203
+ filters=256
204
+ size=1
205
+ stride=1
206
+ pad=1
207
+ activation=leaky
208
+
209
+ [convolutional]
210
+ batch_normalize=1
211
+ filters=512
212
+ size=3
213
+ stride=1
214
+ pad=1
215
+ activation=leaky
216
+
217
+ [convolutional]
218
+ size=1
219
+ stride=1
220
+ pad=1
221
+ filters=255
222
+ activation=linear
223
+
224
+
225
+
226
+ [yolo]
227
+ mask = 3,4,5
228
+ anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
229
+ classes=80
230
+ num=6
231
+ jitter=.3
232
+ scale_x_y = 1.05
233
+ cls_normalizer=1.0
234
+ iou_normalizer=0.07
235
+ iou_loss=ciou
236
+ ignore_thresh = .7
237
+ truth_thresh = 1
238
+ random=0
239
+ resize=1.5
240
+ nms_kind=greedynms
241
+ beta_nms=0.6
242
+ #new_coords=1
243
+ #scale_x_y = 2.0
244
+
245
+ [route]
246
+ layers = -4
247
+
248
+ [convolutional]
249
+ batch_normalize=1
250
+ filters=128
251
+ size=1
252
+ stride=1
253
+ pad=1
254
+ activation=leaky
255
+
256
+ [upsample]
257
+ stride=2
258
+
259
+ [route]
260
+ layers = -1, 23
261
+
262
+ [convolutional]
263
+ batch_normalize=1
264
+ filters=256
265
+ size=3
266
+ stride=1
267
+ pad=1
268
+ activation=leaky
269
+
270
+ [convolutional]
271
+ size=1
272
+ stride=1
273
+ pad=1
274
+ filters=255
275
+ activation=linear
276
+
277
+ [yolo]
278
+ mask = 1,2,3
279
+ anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
280
+ classes=80
281
+ num=6
282
+ jitter=.3
283
+ scale_x_y = 1.05
284
+ cls_normalizer=1.0
285
+ iou_normalizer=0.07
286
+ iou_loss=ciou
287
+ ignore_thresh = .7
288
+ truth_thresh = 1
289
+ random=0
290
+ resize=1.5
291
+ nms_kind=greedynms
292
+ beta_nms=0.6
293
+ #new_coords=1
294
+ #scale_x_y = 2.0
yolov4-tiny.weights ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf9fbfd0f6d4869b35762f56100f50ed05268084078805f0e7989efe5bb8ca87
3
+ size 24251276
yolov4.cfg ADDED
@@ -0,0 +1,1158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [net]
2
+ batch=64
3
+ subdivisions=8
4
+ # Training
5
+ width=512
6
+ height=512
7
+ # width=608
8
+ # height=608
9
+ channels=3
10
+ momentum=0.949
11
+ decay=0.0005
12
+ angle=0
13
+ saturation = 1.5
14
+ exposure = 1.5
15
+ hue=.1
16
+
17
+ learning_rate=0.0013
18
+ burn_in=1000
19
+ max_batches = 500500
20
+ policy=steps
21
+ steps=400000,450000
22
+ scales=.1,.1
23
+
24
+ #cutmix=1
25
+ mosaic=1
26
+
27
+ #:104x104 54:52x52 85:26x26 104:13x13 for 416
28
+
29
+ [convolutional]
30
+ batch_normalize=1
31
+ filters=32
32
+ size=3
33
+ stride=1
34
+ pad=1
35
+ activation=mish
36
+
37
+ # Downsample
38
+
39
+ [convolutional]
40
+ batch_normalize=1
41
+ filters=64
42
+ size=3
43
+ stride=2
44
+ pad=1
45
+ activation=mish
46
+
47
+ [convolutional]
48
+ batch_normalize=1
49
+ filters=64
50
+ size=1
51
+ stride=1
52
+ pad=1
53
+ activation=mish
54
+
55
+ [route]
56
+ layers = -2
57
+
58
+ [convolutional]
59
+ batch_normalize=1
60
+ filters=64
61
+ size=1
62
+ stride=1
63
+ pad=1
64
+ activation=mish
65
+
66
+ [convolutional]
67
+ batch_normalize=1
68
+ filters=32
69
+ size=1
70
+ stride=1
71
+ pad=1
72
+ activation=mish
73
+
74
+ [convolutional]
75
+ batch_normalize=1
76
+ filters=64
77
+ size=3
78
+ stride=1
79
+ pad=1
80
+ activation=mish
81
+
82
+ [shortcut]
83
+ from=-3
84
+ activation=linear
85
+
86
+ [convolutional]
87
+ batch_normalize=1
88
+ filters=64
89
+ size=1
90
+ stride=1
91
+ pad=1
92
+ activation=mish
93
+
94
+ [route]
95
+ layers = -1,-7
96
+
97
+ [convolutional]
98
+ batch_normalize=1
99
+ filters=64
100
+ size=1
101
+ stride=1
102
+ pad=1
103
+ activation=mish
104
+
105
+ # Downsample
106
+
107
+ [convolutional]
108
+ batch_normalize=1
109
+ filters=128
110
+ size=3
111
+ stride=2
112
+ pad=1
113
+ activation=mish
114
+
115
+ [convolutional]
116
+ batch_normalize=1
117
+ filters=64
118
+ size=1
119
+ stride=1
120
+ pad=1
121
+ activation=mish
122
+
123
+ [route]
124
+ layers = -2
125
+
126
+ [convolutional]
127
+ batch_normalize=1
128
+ filters=64
129
+ size=1
130
+ stride=1
131
+ pad=1
132
+ activation=mish
133
+
134
+ [convolutional]
135
+ batch_normalize=1
136
+ filters=64
137
+ size=1
138
+ stride=1
139
+ pad=1
140
+ activation=mish
141
+
142
+ [convolutional]
143
+ batch_normalize=1
144
+ filters=64
145
+ size=3
146
+ stride=1
147
+ pad=1
148
+ activation=mish
149
+
150
+ [shortcut]
151
+ from=-3
152
+ activation=linear
153
+
154
+ [convolutional]
155
+ batch_normalize=1
156
+ filters=64
157
+ size=1
158
+ stride=1
159
+ pad=1
160
+ activation=mish
161
+
162
+ [convolutional]
163
+ batch_normalize=1
164
+ filters=64
165
+ size=3
166
+ stride=1
167
+ pad=1
168
+ activation=mish
169
+
170
+ [shortcut]
171
+ from=-3
172
+ activation=linear
173
+
174
+ [convolutional]
175
+ batch_normalize=1
176
+ filters=64
177
+ size=1
178
+ stride=1
179
+ pad=1
180
+ activation=mish
181
+
182
+ [route]
183
+ layers = -1,-10
184
+
185
+ [convolutional]
186
+ batch_normalize=1
187
+ filters=128
188
+ size=1
189
+ stride=1
190
+ pad=1
191
+ activation=mish
192
+
193
+ # Downsample
194
+
195
+ [convolutional]
196
+ batch_normalize=1
197
+ filters=256
198
+ size=3
199
+ stride=2
200
+ pad=1
201
+ activation=mish
202
+
203
+ [convolutional]
204
+ batch_normalize=1
205
+ filters=128
206
+ size=1
207
+ stride=1
208
+ pad=1
209
+ activation=mish
210
+
211
+ [route]
212
+ layers = -2
213
+
214
+ [convolutional]
215
+ batch_normalize=1
216
+ filters=128
217
+ size=1
218
+ stride=1
219
+ pad=1
220
+ activation=mish
221
+
222
+ [convolutional]
223
+ batch_normalize=1
224
+ filters=128
225
+ size=1
226
+ stride=1
227
+ pad=1
228
+ activation=mish
229
+
230
+ [convolutional]
231
+ batch_normalize=1
232
+ filters=128
233
+ size=3
234
+ stride=1
235
+ pad=1
236
+ activation=mish
237
+
238
+ [shortcut]
239
+ from=-3
240
+ activation=linear
241
+
242
+ [convolutional]
243
+ batch_normalize=1
244
+ filters=128
245
+ size=1
246
+ stride=1
247
+ pad=1
248
+ activation=mish
249
+
250
+ [convolutional]
251
+ batch_normalize=1
252
+ filters=128
253
+ size=3
254
+ stride=1
255
+ pad=1
256
+ activation=mish
257
+
258
+ [shortcut]
259
+ from=-3
260
+ activation=linear
261
+
262
+ [convolutional]
263
+ batch_normalize=1
264
+ filters=128
265
+ size=1
266
+ stride=1
267
+ pad=1
268
+ activation=mish
269
+
270
+ [convolutional]
271
+ batch_normalize=1
272
+ filters=128
273
+ size=3
274
+ stride=1
275
+ pad=1
276
+ activation=mish
277
+
278
+ [shortcut]
279
+ from=-3
280
+ activation=linear
281
+
282
+ [convolutional]
283
+ batch_normalize=1
284
+ filters=128
285
+ size=1
286
+ stride=1
287
+ pad=1
288
+ activation=mish
289
+
290
+ [convolutional]
291
+ batch_normalize=1
292
+ filters=128
293
+ size=3
294
+ stride=1
295
+ pad=1
296
+ activation=mish
297
+
298
+ [shortcut]
299
+ from=-3
300
+ activation=linear
301
+
302
+
303
+ [convolutional]
304
+ batch_normalize=1
305
+ filters=128
306
+ size=1
307
+ stride=1
308
+ pad=1
309
+ activation=mish
310
+
311
+ [convolutional]
312
+ batch_normalize=1
313
+ filters=128
314
+ size=3
315
+ stride=1
316
+ pad=1
317
+ activation=mish
318
+
319
+ [shortcut]
320
+ from=-3
321
+ activation=linear
322
+
323
+ [convolutional]
324
+ batch_normalize=1
325
+ filters=128
326
+ size=1
327
+ stride=1
328
+ pad=1
329
+ activation=mish
330
+
331
+ [convolutional]
332
+ batch_normalize=1
333
+ filters=128
334
+ size=3
335
+ stride=1
336
+ pad=1
337
+ activation=mish
338
+
339
+ [shortcut]
340
+ from=-3
341
+ activation=linear
342
+
343
+ [convolutional]
344
+ batch_normalize=1
345
+ filters=128
346
+ size=1
347
+ stride=1
348
+ pad=1
349
+ activation=mish
350
+
351
+ [convolutional]
352
+ batch_normalize=1
353
+ filters=128
354
+ size=3
355
+ stride=1
356
+ pad=1
357
+ activation=mish
358
+
359
+ [shortcut]
360
+ from=-3
361
+ activation=linear
362
+
363
+ [convolutional]
364
+ batch_normalize=1
365
+ filters=128
366
+ size=1
367
+ stride=1
368
+ pad=1
369
+ activation=mish
370
+
371
+ [convolutional]
372
+ batch_normalize=1
373
+ filters=128
374
+ size=3
375
+ stride=1
376
+ pad=1
377
+ activation=mish
378
+
379
+ [shortcut]
380
+ from=-3
381
+ activation=linear
382
+
383
+ [convolutional]
384
+ batch_normalize=1
385
+ filters=128
386
+ size=1
387
+ stride=1
388
+ pad=1
389
+ activation=mish
390
+
391
+ [route]
392
+ layers = -1,-28
393
+
394
+ [convolutional]
395
+ batch_normalize=1
396
+ filters=256
397
+ size=1
398
+ stride=1
399
+ pad=1
400
+ activation=mish
401
+
402
+ # Downsample
403
+
404
+ [convolutional]
405
+ batch_normalize=1
406
+ filters=512
407
+ size=3
408
+ stride=2
409
+ pad=1
410
+ activation=mish
411
+
412
+ [convolutional]
413
+ batch_normalize=1
414
+ filters=256
415
+ size=1
416
+ stride=1
417
+ pad=1
418
+ activation=mish
419
+
420
+ [route]
421
+ layers = -2
422
+
423
+ [convolutional]
424
+ batch_normalize=1
425
+ filters=256
426
+ size=1
427
+ stride=1
428
+ pad=1
429
+ activation=mish
430
+
431
+ [convolutional]
432
+ batch_normalize=1
433
+ filters=256
434
+ size=1
435
+ stride=1
436
+ pad=1
437
+ activation=mish
438
+
439
+ [convolutional]
440
+ batch_normalize=1
441
+ filters=256
442
+ size=3
443
+ stride=1
444
+ pad=1
445
+ activation=mish
446
+
447
+ [shortcut]
448
+ from=-3
449
+ activation=linear
450
+
451
+
452
+ [convolutional]
453
+ batch_normalize=1
454
+ filters=256
455
+ size=1
456
+ stride=1
457
+ pad=1
458
+ activation=mish
459
+
460
+ [convolutional]
461
+ batch_normalize=1
462
+ filters=256
463
+ size=3
464
+ stride=1
465
+ pad=1
466
+ activation=mish
467
+
468
+ [shortcut]
469
+ from=-3
470
+ activation=linear
471
+
472
+
473
+ [convolutional]
474
+ batch_normalize=1
475
+ filters=256
476
+ size=1
477
+ stride=1
478
+ pad=1
479
+ activation=mish
480
+
481
+ [convolutional]
482
+ batch_normalize=1
483
+ filters=256
484
+ size=3
485
+ stride=1
486
+ pad=1
487
+ activation=mish
488
+
489
+ [shortcut]
490
+ from=-3
491
+ activation=linear
492
+
493
+
494
+ [convolutional]
495
+ batch_normalize=1
496
+ filters=256
497
+ size=1
498
+ stride=1
499
+ pad=1
500
+ activation=mish
501
+
502
+ [convolutional]
503
+ batch_normalize=1
504
+ filters=256
505
+ size=3
506
+ stride=1
507
+ pad=1
508
+ activation=mish
509
+
510
+ [shortcut]
511
+ from=-3
512
+ activation=linear
513
+
514
+
515
+ [convolutional]
516
+ batch_normalize=1
517
+ filters=256
518
+ size=1
519
+ stride=1
520
+ pad=1
521
+ activation=mish
522
+
523
+ [convolutional]
524
+ batch_normalize=1
525
+ filters=256
526
+ size=3
527
+ stride=1
528
+ pad=1
529
+ activation=mish
530
+
531
+ [shortcut]
532
+ from=-3
533
+ activation=linear
534
+
535
+
536
+ [convolutional]
537
+ batch_normalize=1
538
+ filters=256
539
+ size=1
540
+ stride=1
541
+ pad=1
542
+ activation=mish
543
+
544
+ [convolutional]
545
+ batch_normalize=1
546
+ filters=256
547
+ size=3
548
+ stride=1
549
+ pad=1
550
+ activation=mish
551
+
552
+ [shortcut]
553
+ from=-3
554
+ activation=linear
555
+
556
+
557
+ [convolutional]
558
+ batch_normalize=1
559
+ filters=256
560
+ size=1
561
+ stride=1
562
+ pad=1
563
+ activation=mish
564
+
565
+ [convolutional]
566
+ batch_normalize=1
567
+ filters=256
568
+ size=3
569
+ stride=1
570
+ pad=1
571
+ activation=mish
572
+
573
+ [shortcut]
574
+ from=-3
575
+ activation=linear
576
+
577
+ [convolutional]
578
+ batch_normalize=1
579
+ filters=256
580
+ size=1
581
+ stride=1
582
+ pad=1
583
+ activation=mish
584
+
585
+ [convolutional]
586
+ batch_normalize=1
587
+ filters=256
588
+ size=3
589
+ stride=1
590
+ pad=1
591
+ activation=mish
592
+
593
+ [shortcut]
594
+ from=-3
595
+ activation=linear
596
+
597
+ [convolutional]
598
+ batch_normalize=1
599
+ filters=256
600
+ size=1
601
+ stride=1
602
+ pad=1
603
+ activation=mish
604
+
605
+ [route]
606
+ layers = -1,-28
607
+
608
+ [convolutional]
609
+ batch_normalize=1
610
+ filters=512
611
+ size=1
612
+ stride=1
613
+ pad=1
614
+ activation=mish
615
+
616
+ # Downsample
617
+
618
+ [convolutional]
619
+ batch_normalize=1
620
+ filters=1024
621
+ size=3
622
+ stride=2
623
+ pad=1
624
+ activation=mish
625
+
626
+ [convolutional]
627
+ batch_normalize=1
628
+ filters=512
629
+ size=1
630
+ stride=1
631
+ pad=1
632
+ activation=mish
633
+
634
+ [route]
635
+ layers = -2
636
+
637
+ [convolutional]
638
+ batch_normalize=1
639
+ filters=512
640
+ size=1
641
+ stride=1
642
+ pad=1
643
+ activation=mish
644
+
645
+ [convolutional]
646
+ batch_normalize=1
647
+ filters=512
648
+ size=1
649
+ stride=1
650
+ pad=1
651
+ activation=mish
652
+
653
+ [convolutional]
654
+ batch_normalize=1
655
+ filters=512
656
+ size=3
657
+ stride=1
658
+ pad=1
659
+ activation=mish
660
+
661
+ [shortcut]
662
+ from=-3
663
+ activation=linear
664
+
665
+ [convolutional]
666
+ batch_normalize=1
667
+ filters=512
668
+ size=1
669
+ stride=1
670
+ pad=1
671
+ activation=mish
672
+
673
+ [convolutional]
674
+ batch_normalize=1
675
+ filters=512
676
+ size=3
677
+ stride=1
678
+ pad=1
679
+ activation=mish
680
+
681
+ [shortcut]
682
+ from=-3
683
+ activation=linear
684
+
685
+ [convolutional]
686
+ batch_normalize=1
687
+ filters=512
688
+ size=1
689
+ stride=1
690
+ pad=1
691
+ activation=mish
692
+
693
+ [convolutional]
694
+ batch_normalize=1
695
+ filters=512
696
+ size=3
697
+ stride=1
698
+ pad=1
699
+ activation=mish
700
+
701
+ [shortcut]
702
+ from=-3
703
+ activation=linear
704
+
705
+ [convolutional]
706
+ batch_normalize=1
707
+ filters=512
708
+ size=1
709
+ stride=1
710
+ pad=1
711
+ activation=mish
712
+
713
+ [convolutional]
714
+ batch_normalize=1
715
+ filters=512
716
+ size=3
717
+ stride=1
718
+ pad=1
719
+ activation=mish
720
+
721
+ [shortcut]
722
+ from=-3
723
+ activation=linear
724
+
725
+ [convolutional]
726
+ batch_normalize=1
727
+ filters=512
728
+ size=1
729
+ stride=1
730
+ pad=1
731
+ activation=mish
732
+
733
+ [route]
734
+ layers = -1,-16
735
+
736
+ [convolutional]
737
+ batch_normalize=1
738
+ filters=1024
739
+ size=1
740
+ stride=1
741
+ pad=1
742
+ activation=mish
743
+
744
+ ##########################
745
+
746
+ [convolutional]
747
+ batch_normalize=1
748
+ filters=512
749
+ size=1
750
+ stride=1
751
+ pad=1
752
+ activation=leaky
753
+
754
+ [convolutional]
755
+ batch_normalize=1
756
+ size=3
757
+ stride=1
758
+ pad=1
759
+ filters=1024
760
+ activation=leaky
761
+
762
+ [convolutional]
763
+ batch_normalize=1
764
+ filters=512
765
+ size=1
766
+ stride=1
767
+ pad=1
768
+ activation=leaky
769
+
770
+ ### SPP ###
771
+ [maxpool]
772
+ stride=1
773
+ size=5
774
+
775
+ [route]
776
+ layers=-2
777
+
778
+ [maxpool]
779
+ stride=1
780
+ size=9
781
+
782
+ [route]
783
+ layers=-4
784
+
785
+ [maxpool]
786
+ stride=1
787
+ size=13
788
+
789
+ [route]
790
+ layers=-1,-3,-5,-6
791
+ ### End SPP ###
792
+
793
+ [convolutional]
794
+ batch_normalize=1
795
+ filters=512
796
+ size=1
797
+ stride=1
798
+ pad=1
799
+ activation=leaky
800
+
801
+ [convolutional]
802
+ batch_normalize=1
803
+ size=3
804
+ stride=1
805
+ pad=1
806
+ filters=1024
807
+ activation=leaky
808
+
809
+ [convolutional]
810
+ batch_normalize=1
811
+ filters=512
812
+ size=1
813
+ stride=1
814
+ pad=1
815
+ activation=leaky
816
+
817
+ [convolutional]
818
+ batch_normalize=1
819
+ filters=256
820
+ size=1
821
+ stride=1
822
+ pad=1
823
+ activation=leaky
824
+
825
+ [upsample]
826
+ stride=2
827
+
828
+ [route]
829
+ layers = 85
830
+
831
+ [convolutional]
832
+ batch_normalize=1
833
+ filters=256
834
+ size=1
835
+ stride=1
836
+ pad=1
837
+ activation=leaky
838
+
839
+ [route]
840
+ layers = -1, -3
841
+
842
+ [convolutional]
843
+ batch_normalize=1
844
+ filters=256
845
+ size=1
846
+ stride=1
847
+ pad=1
848
+ activation=leaky
849
+
850
+ [convolutional]
851
+ batch_normalize=1
852
+ size=3
853
+ stride=1
854
+ pad=1
855
+ filters=512
856
+ activation=leaky
857
+
858
+ [convolutional]
859
+ batch_normalize=1
860
+ filters=256
861
+ size=1
862
+ stride=1
863
+ pad=1
864
+ activation=leaky
865
+
866
+ [convolutional]
867
+ batch_normalize=1
868
+ size=3
869
+ stride=1
870
+ pad=1
871
+ filters=512
872
+ activation=leaky
873
+
874
+ [convolutional]
875
+ batch_normalize=1
876
+ filters=256
877
+ size=1
878
+ stride=1
879
+ pad=1
880
+ activation=leaky
881
+
882
+ [convolutional]
883
+ batch_normalize=1
884
+ filters=128
885
+ size=1
886
+ stride=1
887
+ pad=1
888
+ activation=leaky
889
+
890
+ [upsample]
891
+ stride=2
892
+
893
+ [route]
894
+ layers = 54
895
+
896
+ [convolutional]
897
+ batch_normalize=1
898
+ filters=128
899
+ size=1
900
+ stride=1
901
+ pad=1
902
+ activation=leaky
903
+
904
+ [route]
905
+ layers = -1, -3
906
+
907
+ [convolutional]
908
+ batch_normalize=1
909
+ filters=128
910
+ size=1
911
+ stride=1
912
+ pad=1
913
+ activation=leaky
914
+
915
+ [convolutional]
916
+ batch_normalize=1
917
+ size=3
918
+ stride=1
919
+ pad=1
920
+ filters=256
921
+ activation=leaky
922
+
923
+ [convolutional]
924
+ batch_normalize=1
925
+ filters=128
926
+ size=1
927
+ stride=1
928
+ pad=1
929
+ activation=leaky
930
+
931
+ [convolutional]
932
+ batch_normalize=1
933
+ size=3
934
+ stride=1
935
+ pad=1
936
+ filters=256
937
+ activation=leaky
938
+
939
+ [convolutional]
940
+ batch_normalize=1
941
+ filters=128
942
+ size=1
943
+ stride=1
944
+ pad=1
945
+ activation=leaky
946
+
947
+ ##########################
948
+
949
+ [convolutional]
950
+ batch_normalize=1
951
+ size=3
952
+ stride=1
953
+ pad=1
954
+ filters=256
955
+ activation=leaky
956
+
957
+ [convolutional]
958
+ size=1
959
+ stride=1
960
+ pad=1
961
+ filters=255
962
+ activation=linear
963
+
964
+
965
+ [yolo]
966
+ mask = 0,1,2
967
+ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
968
+ classes=80
969
+ num=9
970
+ jitter=.3
971
+ ignore_thresh = .7
972
+ truth_thresh = 1
973
+ scale_x_y = 1.2
974
+ iou_thresh=0.213
975
+ cls_normalizer=1.0
976
+ iou_normalizer=0.07
977
+ iou_loss=ciou
978
+ nms_kind=greedynms
979
+ beta_nms=0.6
980
+ max_delta=5
981
+
982
+
983
+ [route]
984
+ layers = -4
985
+
986
+ [convolutional]
987
+ batch_normalize=1
988
+ size=3
989
+ stride=2
990
+ pad=1
991
+ filters=256
992
+ activation=leaky
993
+
994
+ [route]
995
+ layers = -1, -16
996
+
997
+ [convolutional]
998
+ batch_normalize=1
999
+ filters=256
1000
+ size=1
1001
+ stride=1
1002
+ pad=1
1003
+ activation=leaky
1004
+
1005
+ [convolutional]
1006
+ batch_normalize=1
1007
+ size=3
1008
+ stride=1
1009
+ pad=1
1010
+ filters=512
1011
+ activation=leaky
1012
+
1013
+ [convolutional]
1014
+ batch_normalize=1
1015
+ filters=256
1016
+ size=1
1017
+ stride=1
1018
+ pad=1
1019
+ activation=leaky
1020
+
1021
+ [convolutional]
1022
+ batch_normalize=1
1023
+ size=3
1024
+ stride=1
1025
+ pad=1
1026
+ filters=512
1027
+ activation=leaky
1028
+
1029
+ [convolutional]
1030
+ batch_normalize=1
1031
+ filters=256
1032
+ size=1
1033
+ stride=1
1034
+ pad=1
1035
+ activation=leaky
1036
+
1037
+ [convolutional]
1038
+ batch_normalize=1
1039
+ size=3
1040
+ stride=1
1041
+ pad=1
1042
+ filters=512
1043
+ activation=leaky
1044
+
1045
+ [convolutional]
1046
+ size=1
1047
+ stride=1
1048
+ pad=1
1049
+ filters=255
1050
+ activation=linear
1051
+
1052
+
1053
+ [yolo]
1054
+ mask = 3,4,5
1055
+ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1056
+ classes=80
1057
+ num=9
1058
+ jitter=.3
1059
+ ignore_thresh = .7
1060
+ truth_thresh = 1
1061
+ scale_x_y = 1.1
1062
+ iou_thresh=0.213
1063
+ cls_normalizer=1.0
1064
+ iou_normalizer=0.07
1065
+ iou_loss=ciou
1066
+ nms_kind=greedynms
1067
+ beta_nms=0.6
1068
+ max_delta=5
1069
+
1070
+
1071
+ [route]
1072
+ layers = -4
1073
+
1074
+ [convolutional]
1075
+ batch_normalize=1
1076
+ size=3
1077
+ stride=2
1078
+ pad=1
1079
+ filters=512
1080
+ activation=leaky
1081
+
1082
+ [route]
1083
+ layers = -1, -37
1084
+
1085
+ [convolutional]
1086
+ batch_normalize=1
1087
+ filters=512
1088
+ size=1
1089
+ stride=1
1090
+ pad=1
1091
+ activation=leaky
1092
+
1093
+ [convolutional]
1094
+ batch_normalize=1
1095
+ size=3
1096
+ stride=1
1097
+ pad=1
1098
+ filters=1024
1099
+ activation=leaky
1100
+
1101
+ [convolutional]
1102
+ batch_normalize=1
1103
+ filters=512
1104
+ size=1
1105
+ stride=1
1106
+ pad=1
1107
+ activation=leaky
1108
+
1109
+ [convolutional]
1110
+ batch_normalize=1
1111
+ size=3
1112
+ stride=1
1113
+ pad=1
1114
+ filters=1024
1115
+ activation=leaky
1116
+
1117
+ [convolutional]
1118
+ batch_normalize=1
1119
+ filters=512
1120
+ size=1
1121
+ stride=1
1122
+ pad=1
1123
+ activation=leaky
1124
+
1125
+ [convolutional]
1126
+ batch_normalize=1
1127
+ size=3
1128
+ stride=1
1129
+ pad=1
1130
+ filters=1024
1131
+ activation=leaky
1132
+
1133
+ [convolutional]
1134
+ size=1
1135
+ stride=1
1136
+ pad=1
1137
+ filters=255
1138
+ activation=linear
1139
+
1140
+
1141
+ [yolo]
1142
+ mask = 6,7,8
1143
+ anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1144
+ classes=80
1145
+ num=9
1146
+ jitter=.3
1147
+ ignore_thresh = .7
1148
+ truth_thresh = 1
1149
+ random=1
1150
+ scale_x_y = 1.05
1151
+ iou_thresh=0.213
1152
+ cls_normalizer=1.0
1153
+ iou_normalizer=0.07
1154
+ iou_loss=ciou
1155
+ nms_kind=greedynms
1156
+ beta_nms=0.6
1157
+ max_delta=5
1158
+
yolov4.weights ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8a4f6c62188738d86dc6898d82724ec0964d0eb9d2ae0f0a9d53d65d108d562
3
+ size 257717640