File size: 24,066 Bytes
e1394b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
2023-10-17 08:46:12,766 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:12,767 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 08:46:12,767 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:12,767 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-17 08:46:12,767 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:12,767 Train:  1100 sentences
2023-10-17 08:46:12,768         (train_with_dev=False, train_with_test=False)
2023-10-17 08:46:12,768 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:12,768 Training Params:
2023-10-17 08:46:12,768  - learning_rate: "3e-05" 
2023-10-17 08:46:12,768  - mini_batch_size: "4"
2023-10-17 08:46:12,768  - max_epochs: "10"
2023-10-17 08:46:12,768  - shuffle: "True"
2023-10-17 08:46:12,768 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:12,768 Plugins:
2023-10-17 08:46:12,768  - TensorboardLogger
2023-10-17 08:46:12,768  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 08:46:12,768 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:12,768 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 08:46:12,768  - metric: "('micro avg', 'f1-score')"
2023-10-17 08:46:12,768 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:12,768 Computation:
2023-10-17 08:46:12,768  - compute on device: cuda:0
2023-10-17 08:46:12,768  - embedding storage: none
2023-10-17 08:46:12,768 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:12,768 Model training base path: "hmbench-ajmc/de-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-17 08:46:12,768 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:12,768 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:12,768 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 08:46:14,067 epoch 1 - iter 27/275 - loss 3.97024551 - time (sec): 1.30 - samples/sec: 1816.98 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:46:15,306 epoch 1 - iter 54/275 - loss 3.41470820 - time (sec): 2.54 - samples/sec: 1694.36 - lr: 0.000006 - momentum: 0.000000
2023-10-17 08:46:16,558 epoch 1 - iter 81/275 - loss 2.68789197 - time (sec): 3.79 - samples/sec: 1760.77 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:46:17,774 epoch 1 - iter 108/275 - loss 2.21443759 - time (sec): 5.01 - samples/sec: 1747.17 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:46:19,034 epoch 1 - iter 135/275 - loss 1.87610511 - time (sec): 6.26 - samples/sec: 1745.65 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:46:20,265 epoch 1 - iter 162/275 - loss 1.63283108 - time (sec): 7.50 - samples/sec: 1762.93 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:46:21,520 epoch 1 - iter 189/275 - loss 1.44276987 - time (sec): 8.75 - samples/sec: 1797.17 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:46:22,795 epoch 1 - iter 216/275 - loss 1.28758424 - time (sec): 10.03 - samples/sec: 1819.62 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:46:24,026 epoch 1 - iter 243/275 - loss 1.19494444 - time (sec): 11.26 - samples/sec: 1791.18 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:46:25,261 epoch 1 - iter 270/275 - loss 1.10556620 - time (sec): 12.49 - samples/sec: 1790.23 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:46:25,489 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:25,489 EPOCH 1 done: loss 1.0898 - lr: 0.000029
2023-10-17 08:46:26,237 DEV : loss 0.2100459337234497 - f1-score (micro avg)  0.7394
2023-10-17 08:46:26,242 saving best model
2023-10-17 08:46:26,590 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:27,824 epoch 2 - iter 27/275 - loss 0.17970721 - time (sec): 1.23 - samples/sec: 1835.24 - lr: 0.000030 - momentum: 0.000000
2023-10-17 08:46:29,079 epoch 2 - iter 54/275 - loss 0.18007533 - time (sec): 2.49 - samples/sec: 1801.59 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:46:30,296 epoch 2 - iter 81/275 - loss 0.18204146 - time (sec): 3.70 - samples/sec: 1799.96 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:46:31,517 epoch 2 - iter 108/275 - loss 0.18586872 - time (sec): 4.93 - samples/sec: 1836.50 - lr: 0.000029 - momentum: 0.000000
2023-10-17 08:46:32,804 epoch 2 - iter 135/275 - loss 0.18371927 - time (sec): 6.21 - samples/sec: 1805.97 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:46:34,029 epoch 2 - iter 162/275 - loss 0.18284554 - time (sec): 7.44 - samples/sec: 1819.86 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:46:35,293 epoch 2 - iter 189/275 - loss 0.17931458 - time (sec): 8.70 - samples/sec: 1810.73 - lr: 0.000028 - momentum: 0.000000
2023-10-17 08:46:36,602 epoch 2 - iter 216/275 - loss 0.18162776 - time (sec): 10.01 - samples/sec: 1831.89 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:46:37,845 epoch 2 - iter 243/275 - loss 0.17965500 - time (sec): 11.25 - samples/sec: 1822.02 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:46:39,081 epoch 2 - iter 270/275 - loss 0.17595326 - time (sec): 12.49 - samples/sec: 1797.58 - lr: 0.000027 - momentum: 0.000000
2023-10-17 08:46:39,300 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:39,300 EPOCH 2 done: loss 0.1765 - lr: 0.000027
2023-10-17 08:46:39,946 DEV : loss 0.20042622089385986 - f1-score (micro avg)  0.7796
2023-10-17 08:46:39,951 saving best model
2023-10-17 08:46:40,414 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:41,662 epoch 3 - iter 27/275 - loss 0.12635593 - time (sec): 1.25 - samples/sec: 1690.00 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:46:42,881 epoch 3 - iter 54/275 - loss 0.09902783 - time (sec): 2.46 - samples/sec: 1597.56 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:46:44,101 epoch 3 - iter 81/275 - loss 0.09432280 - time (sec): 3.68 - samples/sec: 1680.69 - lr: 0.000026 - momentum: 0.000000
2023-10-17 08:46:45,347 epoch 3 - iter 108/275 - loss 0.10335773 - time (sec): 4.93 - samples/sec: 1757.59 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:46:46,572 epoch 3 - iter 135/275 - loss 0.09804934 - time (sec): 6.16 - samples/sec: 1747.46 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:46:47,787 epoch 3 - iter 162/275 - loss 0.09737870 - time (sec): 7.37 - samples/sec: 1775.22 - lr: 0.000025 - momentum: 0.000000
2023-10-17 08:46:49,052 epoch 3 - iter 189/275 - loss 0.09737990 - time (sec): 8.64 - samples/sec: 1765.38 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:46:50,289 epoch 3 - iter 216/275 - loss 0.10009286 - time (sec): 9.87 - samples/sec: 1777.82 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:46:51,552 epoch 3 - iter 243/275 - loss 0.10060457 - time (sec): 11.14 - samples/sec: 1789.43 - lr: 0.000024 - momentum: 0.000000
2023-10-17 08:46:52,790 epoch 3 - iter 270/275 - loss 0.10670080 - time (sec): 12.37 - samples/sec: 1800.99 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:46:53,026 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:53,026 EPOCH 3 done: loss 0.1055 - lr: 0.000023
2023-10-17 08:46:53,665 DEV : loss 0.14525996148586273 - f1-score (micro avg)  0.852
2023-10-17 08:46:53,670 saving best model
2023-10-17 08:46:54,106 ----------------------------------------------------------------------------------------------------
2023-10-17 08:46:55,432 epoch 4 - iter 27/275 - loss 0.07663780 - time (sec): 1.32 - samples/sec: 1604.50 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:46:56,710 epoch 4 - iter 54/275 - loss 0.05673337 - time (sec): 2.60 - samples/sec: 1664.79 - lr: 0.000023 - momentum: 0.000000
2023-10-17 08:46:57,963 epoch 4 - iter 81/275 - loss 0.08993934 - time (sec): 3.85 - samples/sec: 1680.69 - lr: 0.000022 - momentum: 0.000000
2023-10-17 08:46:59,202 epoch 4 - iter 108/275 - loss 0.08785841 - time (sec): 5.09 - samples/sec: 1712.71 - lr: 0.000022 - momentum: 0.000000
2023-10-17 08:47:00,555 epoch 4 - iter 135/275 - loss 0.08309543 - time (sec): 6.45 - samples/sec: 1682.77 - lr: 0.000022 - momentum: 0.000000
2023-10-17 08:47:01,879 epoch 4 - iter 162/275 - loss 0.08392456 - time (sec): 7.77 - samples/sec: 1709.62 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:47:03,101 epoch 4 - iter 189/275 - loss 0.08150298 - time (sec): 8.99 - samples/sec: 1713.53 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:47:04,325 epoch 4 - iter 216/275 - loss 0.08090320 - time (sec): 10.22 - samples/sec: 1750.66 - lr: 0.000021 - momentum: 0.000000
2023-10-17 08:47:05,557 epoch 4 - iter 243/275 - loss 0.08222903 - time (sec): 11.45 - samples/sec: 1756.15 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:47:06,785 epoch 4 - iter 270/275 - loss 0.08283375 - time (sec): 12.68 - samples/sec: 1757.16 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:47:07,008 ----------------------------------------------------------------------------------------------------
2023-10-17 08:47:07,008 EPOCH 4 done: loss 0.0815 - lr: 0.000020
2023-10-17 08:47:07,649 DEV : loss 0.16326691210269928 - f1-score (micro avg)  0.8735
2023-10-17 08:47:07,654 saving best model
2023-10-17 08:47:08,086 ----------------------------------------------------------------------------------------------------
2023-10-17 08:47:09,299 epoch 5 - iter 27/275 - loss 0.11167857 - time (sec): 1.21 - samples/sec: 2006.63 - lr: 0.000020 - momentum: 0.000000
2023-10-17 08:47:10,524 epoch 5 - iter 54/275 - loss 0.08355736 - time (sec): 2.44 - samples/sec: 1883.54 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:47:11,747 epoch 5 - iter 81/275 - loss 0.06609019 - time (sec): 3.66 - samples/sec: 1807.76 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:47:13,030 epoch 5 - iter 108/275 - loss 0.07976555 - time (sec): 4.94 - samples/sec: 1735.78 - lr: 0.000019 - momentum: 0.000000
2023-10-17 08:47:14,249 epoch 5 - iter 135/275 - loss 0.07909386 - time (sec): 6.16 - samples/sec: 1767.66 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:47:15,546 epoch 5 - iter 162/275 - loss 0.07437644 - time (sec): 7.46 - samples/sec: 1760.74 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:47:16,766 epoch 5 - iter 189/275 - loss 0.07040829 - time (sec): 8.68 - samples/sec: 1780.58 - lr: 0.000018 - momentum: 0.000000
2023-10-17 08:47:17,986 epoch 5 - iter 216/275 - loss 0.06799222 - time (sec): 9.90 - samples/sec: 1811.00 - lr: 0.000017 - momentum: 0.000000
2023-10-17 08:47:19,246 epoch 5 - iter 243/275 - loss 0.06299278 - time (sec): 11.16 - samples/sec: 1805.20 - lr: 0.000017 - momentum: 0.000000
2023-10-17 08:47:20,482 epoch 5 - iter 270/275 - loss 0.06246345 - time (sec): 12.40 - samples/sec: 1806.75 - lr: 0.000017 - momentum: 0.000000
2023-10-17 08:47:20,713 ----------------------------------------------------------------------------------------------------
2023-10-17 08:47:20,713 EPOCH 5 done: loss 0.0624 - lr: 0.000017
2023-10-17 08:47:21,345 DEV : loss 0.16908515989780426 - f1-score (micro avg)  0.8803
2023-10-17 08:47:21,350 saving best model
2023-10-17 08:47:21,779 ----------------------------------------------------------------------------------------------------
2023-10-17 08:47:22,983 epoch 6 - iter 27/275 - loss 0.05658757 - time (sec): 1.20 - samples/sec: 1666.25 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:47:24,261 epoch 6 - iter 54/275 - loss 0.05408551 - time (sec): 2.48 - samples/sec: 1693.91 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:47:25,553 epoch 6 - iter 81/275 - loss 0.06296102 - time (sec): 3.77 - samples/sec: 1725.26 - lr: 0.000016 - momentum: 0.000000
2023-10-17 08:47:26,766 epoch 6 - iter 108/275 - loss 0.06062024 - time (sec): 4.98 - samples/sec: 1734.48 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:47:27,990 epoch 6 - iter 135/275 - loss 0.05487807 - time (sec): 6.21 - samples/sec: 1761.68 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:47:29,247 epoch 6 - iter 162/275 - loss 0.04790647 - time (sec): 7.46 - samples/sec: 1758.75 - lr: 0.000015 - momentum: 0.000000
2023-10-17 08:47:30,503 epoch 6 - iter 189/275 - loss 0.04791047 - time (sec): 8.72 - samples/sec: 1759.19 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:47:31,762 epoch 6 - iter 216/275 - loss 0.04903596 - time (sec): 9.98 - samples/sec: 1765.27 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:47:33,033 epoch 6 - iter 243/275 - loss 0.05332217 - time (sec): 11.25 - samples/sec: 1784.97 - lr: 0.000014 - momentum: 0.000000
2023-10-17 08:47:34,255 epoch 6 - iter 270/275 - loss 0.05091613 - time (sec): 12.47 - samples/sec: 1787.09 - lr: 0.000013 - momentum: 0.000000
2023-10-17 08:47:34,480 ----------------------------------------------------------------------------------------------------
2023-10-17 08:47:34,481 EPOCH 6 done: loss 0.0501 - lr: 0.000013
2023-10-17 08:47:35,157 DEV : loss 0.17602381110191345 - f1-score (micro avg)  0.8822
2023-10-17 08:47:35,167 saving best model
2023-10-17 08:47:35,710 ----------------------------------------------------------------------------------------------------
2023-10-17 08:47:37,152 epoch 7 - iter 27/275 - loss 0.08149249 - time (sec): 1.44 - samples/sec: 1431.14 - lr: 0.000013 - momentum: 0.000000
2023-10-17 08:47:38,645 epoch 7 - iter 54/275 - loss 0.05422051 - time (sec): 2.93 - samples/sec: 1503.81 - lr: 0.000013 - momentum: 0.000000
2023-10-17 08:47:40,059 epoch 7 - iter 81/275 - loss 0.06668234 - time (sec): 4.35 - samples/sec: 1541.04 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:47:41,325 epoch 7 - iter 108/275 - loss 0.05693708 - time (sec): 5.61 - samples/sec: 1591.18 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:47:42,586 epoch 7 - iter 135/275 - loss 0.04821359 - time (sec): 6.87 - samples/sec: 1607.07 - lr: 0.000012 - momentum: 0.000000
2023-10-17 08:47:43,887 epoch 7 - iter 162/275 - loss 0.04377735 - time (sec): 8.18 - samples/sec: 1638.57 - lr: 0.000011 - momentum: 0.000000
2023-10-17 08:47:45,191 epoch 7 - iter 189/275 - loss 0.04185787 - time (sec): 9.48 - samples/sec: 1673.78 - lr: 0.000011 - momentum: 0.000000
2023-10-17 08:47:46,422 epoch 7 - iter 216/275 - loss 0.04208472 - time (sec): 10.71 - samples/sec: 1678.53 - lr: 0.000011 - momentum: 0.000000
2023-10-17 08:47:47,681 epoch 7 - iter 243/275 - loss 0.04099767 - time (sec): 11.97 - samples/sec: 1674.21 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:47:49,017 epoch 7 - iter 270/275 - loss 0.04134562 - time (sec): 13.31 - samples/sec: 1678.74 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:47:49,256 ----------------------------------------------------------------------------------------------------
2023-10-17 08:47:49,256 EPOCH 7 done: loss 0.0406 - lr: 0.000010
2023-10-17 08:47:49,919 DEV : loss 0.18893340229988098 - f1-score (micro avg)  0.8723
2023-10-17 08:47:49,923 ----------------------------------------------------------------------------------------------------
2023-10-17 08:47:51,156 epoch 8 - iter 27/275 - loss 0.00906963 - time (sec): 1.23 - samples/sec: 1960.66 - lr: 0.000010 - momentum: 0.000000
2023-10-17 08:47:52,384 epoch 8 - iter 54/275 - loss 0.02783979 - time (sec): 2.46 - samples/sec: 1887.13 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:47:53,638 epoch 8 - iter 81/275 - loss 0.02990417 - time (sec): 3.71 - samples/sec: 1848.33 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:47:54,853 epoch 8 - iter 108/275 - loss 0.02627080 - time (sec): 4.93 - samples/sec: 1826.83 - lr: 0.000009 - momentum: 0.000000
2023-10-17 08:47:56,119 epoch 8 - iter 135/275 - loss 0.02263615 - time (sec): 6.19 - samples/sec: 1866.59 - lr: 0.000008 - momentum: 0.000000
2023-10-17 08:47:57,325 epoch 8 - iter 162/275 - loss 0.02311608 - time (sec): 7.40 - samples/sec: 1842.73 - lr: 0.000008 - momentum: 0.000000
2023-10-17 08:47:58,559 epoch 8 - iter 189/275 - loss 0.02151264 - time (sec): 8.63 - samples/sec: 1843.38 - lr: 0.000008 - momentum: 0.000000
2023-10-17 08:47:59,779 epoch 8 - iter 216/275 - loss 0.02896352 - time (sec): 9.85 - samples/sec: 1837.29 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:48:01,054 epoch 8 - iter 243/275 - loss 0.02972546 - time (sec): 11.13 - samples/sec: 1825.46 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:48:02,272 epoch 8 - iter 270/275 - loss 0.02940927 - time (sec): 12.35 - samples/sec: 1816.05 - lr: 0.000007 - momentum: 0.000000
2023-10-17 08:48:02,503 ----------------------------------------------------------------------------------------------------
2023-10-17 08:48:02,503 EPOCH 8 done: loss 0.0301 - lr: 0.000007
2023-10-17 08:48:03,194 DEV : loss 0.17884737253189087 - f1-score (micro avg)  0.8905
2023-10-17 08:48:03,198 saving best model
2023-10-17 08:48:03,654 ----------------------------------------------------------------------------------------------------
2023-10-17 08:48:04,846 epoch 9 - iter 27/275 - loss 0.03662375 - time (sec): 1.19 - samples/sec: 2005.60 - lr: 0.000006 - momentum: 0.000000
2023-10-17 08:48:06,020 epoch 9 - iter 54/275 - loss 0.02152339 - time (sec): 2.36 - samples/sec: 2035.85 - lr: 0.000006 - momentum: 0.000000
2023-10-17 08:48:07,185 epoch 9 - iter 81/275 - loss 0.02197956 - time (sec): 3.53 - samples/sec: 1949.37 - lr: 0.000006 - momentum: 0.000000
2023-10-17 08:48:08,371 epoch 9 - iter 108/275 - loss 0.02212008 - time (sec): 4.72 - samples/sec: 1896.48 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:48:09,590 epoch 9 - iter 135/275 - loss 0.02084789 - time (sec): 5.93 - samples/sec: 1851.36 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:48:10,800 epoch 9 - iter 162/275 - loss 0.02603522 - time (sec): 7.14 - samples/sec: 1858.08 - lr: 0.000005 - momentum: 0.000000
2023-10-17 08:48:12,005 epoch 9 - iter 189/275 - loss 0.02658731 - time (sec): 8.35 - samples/sec: 1857.87 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:48:13,260 epoch 9 - iter 216/275 - loss 0.02480973 - time (sec): 9.60 - samples/sec: 1835.23 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:48:14,480 epoch 9 - iter 243/275 - loss 0.02327959 - time (sec): 10.82 - samples/sec: 1840.65 - lr: 0.000004 - momentum: 0.000000
2023-10-17 08:48:15,704 epoch 9 - iter 270/275 - loss 0.02433170 - time (sec): 12.05 - samples/sec: 1849.42 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:48:15,935 ----------------------------------------------------------------------------------------------------
2023-10-17 08:48:15,935 EPOCH 9 done: loss 0.0239 - lr: 0.000003
2023-10-17 08:48:16,663 DEV : loss 0.1809743344783783 - f1-score (micro avg)  0.8884
2023-10-17 08:48:16,668 ----------------------------------------------------------------------------------------------------
2023-10-17 08:48:17,828 epoch 10 - iter 27/275 - loss 0.01640093 - time (sec): 1.16 - samples/sec: 1842.79 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:48:19,001 epoch 10 - iter 54/275 - loss 0.01996468 - time (sec): 2.33 - samples/sec: 1952.99 - lr: 0.000003 - momentum: 0.000000
2023-10-17 08:48:20,159 epoch 10 - iter 81/275 - loss 0.02308692 - time (sec): 3.49 - samples/sec: 1934.94 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:48:21,308 epoch 10 - iter 108/275 - loss 0.01854556 - time (sec): 4.64 - samples/sec: 1864.98 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:48:22,472 epoch 10 - iter 135/275 - loss 0.01695391 - time (sec): 5.80 - samples/sec: 1868.82 - lr: 0.000002 - momentum: 0.000000
2023-10-17 08:48:23,639 epoch 10 - iter 162/275 - loss 0.02042256 - time (sec): 6.97 - samples/sec: 1872.87 - lr: 0.000001 - momentum: 0.000000
2023-10-17 08:48:24,861 epoch 10 - iter 189/275 - loss 0.01872876 - time (sec): 8.19 - samples/sec: 1894.03 - lr: 0.000001 - momentum: 0.000000
2023-10-17 08:48:26,090 epoch 10 - iter 216/275 - loss 0.02260026 - time (sec): 9.42 - samples/sec: 1892.11 - lr: 0.000001 - momentum: 0.000000
2023-10-17 08:48:27,338 epoch 10 - iter 243/275 - loss 0.02105999 - time (sec): 10.67 - samples/sec: 1887.12 - lr: 0.000000 - momentum: 0.000000
2023-10-17 08:48:28,558 epoch 10 - iter 270/275 - loss 0.01967608 - time (sec): 11.89 - samples/sec: 1879.11 - lr: 0.000000 - momentum: 0.000000
2023-10-17 08:48:28,795 ----------------------------------------------------------------------------------------------------
2023-10-17 08:48:28,795 EPOCH 10 done: loss 0.0199 - lr: 0.000000
2023-10-17 08:48:29,444 DEV : loss 0.18379689753055573 - f1-score (micro avg)  0.8828
2023-10-17 08:48:29,797 ----------------------------------------------------------------------------------------------------
2023-10-17 08:48:29,799 Loading model from best epoch ...
2023-10-17 08:48:31,311 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-17 08:48:31,953 
Results:
- F-score (micro) 0.9062
- F-score (macro) 0.6759
- Accuracy 0.8469

By class:
              precision    recall  f1-score   support

       scope     0.9023    0.8920    0.8971       176
        pers     0.9680    0.9453    0.9565       128
        work     0.8533    0.8649    0.8591        74
         loc     1.0000    0.5000    0.6667         2
      object     0.0000    0.0000    0.0000         2

   micro avg     0.9147    0.8979    0.9062       382
   macro avg     0.7447    0.6404    0.6759       382
weighted avg     0.9106    0.8979    0.9038       382

2023-10-17 08:48:31,954 ----------------------------------------------------------------------------------------------------