hkivancoral commited on
Commit
ba14f9f
·
1 Parent(s): ce4abc7

End of training

Browse files
README.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/beit-base-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: smids_1x_beit_base_rms_00001_fold5
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: test
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.895
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # smids_1x_beit_base_rms_00001_fold5
32
+
33
+ This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.9075
36
+ - Accuracy: 0.895
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 1e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 50
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 0.3429 | 1.0 | 75 | 0.3196 | 0.8817 |
69
+ | 0.2319 | 2.0 | 150 | 0.2825 | 0.8883 |
70
+ | 0.1642 | 3.0 | 225 | 0.2956 | 0.8883 |
71
+ | 0.0613 | 4.0 | 300 | 0.2991 | 0.905 |
72
+ | 0.0375 | 5.0 | 375 | 0.4173 | 0.89 |
73
+ | 0.0392 | 6.0 | 450 | 0.4376 | 0.895 |
74
+ | 0.0266 | 7.0 | 525 | 0.5591 | 0.8933 |
75
+ | 0.0211 | 8.0 | 600 | 0.6357 | 0.8883 |
76
+ | 0.0129 | 9.0 | 675 | 0.5589 | 0.8967 |
77
+ | 0.039 | 10.0 | 750 | 0.6087 | 0.8933 |
78
+ | 0.0196 | 11.0 | 825 | 0.6853 | 0.8967 |
79
+ | 0.0875 | 12.0 | 900 | 0.6905 | 0.8833 |
80
+ | 0.0161 | 13.0 | 975 | 0.7505 | 0.8867 |
81
+ | 0.0005 | 14.0 | 1050 | 0.7592 | 0.875 |
82
+ | 0.0258 | 15.0 | 1125 | 0.7859 | 0.8783 |
83
+ | 0.0008 | 16.0 | 1200 | 0.7624 | 0.8783 |
84
+ | 0.0078 | 17.0 | 1275 | 0.7129 | 0.8917 |
85
+ | 0.0151 | 18.0 | 1350 | 0.7730 | 0.885 |
86
+ | 0.015 | 19.0 | 1425 | 0.7612 | 0.88 |
87
+ | 0.0036 | 20.0 | 1500 | 0.7765 | 0.89 |
88
+ | 0.0036 | 21.0 | 1575 | 0.7746 | 0.89 |
89
+ | 0.0163 | 22.0 | 1650 | 0.7920 | 0.88 |
90
+ | 0.0002 | 23.0 | 1725 | 0.7971 | 0.8867 |
91
+ | 0.0013 | 24.0 | 1800 | 0.8091 | 0.8833 |
92
+ | 0.0084 | 25.0 | 1875 | 0.8422 | 0.8817 |
93
+ | 0.0077 | 26.0 | 1950 | 0.8718 | 0.89 |
94
+ | 0.0059 | 27.0 | 2025 | 0.8359 | 0.89 |
95
+ | 0.0135 | 28.0 | 2100 | 0.8777 | 0.8833 |
96
+ | 0.0007 | 29.0 | 2175 | 0.8422 | 0.895 |
97
+ | 0.0059 | 30.0 | 2250 | 0.8920 | 0.8933 |
98
+ | 0.0039 | 31.0 | 2325 | 0.9311 | 0.875 |
99
+ | 0.0027 | 32.0 | 2400 | 0.8796 | 0.89 |
100
+ | 0.0001 | 33.0 | 2475 | 0.9632 | 0.88 |
101
+ | 0.0031 | 34.0 | 2550 | 0.8453 | 0.89 |
102
+ | 0.0036 | 35.0 | 2625 | 0.8275 | 0.895 |
103
+ | 0.003 | 36.0 | 2700 | 0.8573 | 0.8883 |
104
+ | 0.0273 | 37.0 | 2775 | 0.8009 | 0.8967 |
105
+ | 0.0042 | 38.0 | 2850 | 0.8716 | 0.8917 |
106
+ | 0.0032 | 39.0 | 2925 | 0.9439 | 0.88 |
107
+ | 0.0005 | 40.0 | 3000 | 0.8577 | 0.8917 |
108
+ | 0.0023 | 41.0 | 3075 | 0.8426 | 0.8867 |
109
+ | 0.0083 | 42.0 | 3150 | 0.8441 | 0.895 |
110
+ | 0.0 | 43.0 | 3225 | 0.8722 | 0.8883 |
111
+ | 0.0036 | 44.0 | 3300 | 0.8679 | 0.8883 |
112
+ | 0.0009 | 45.0 | 3375 | 0.9113 | 0.8917 |
113
+ | 0.0131 | 46.0 | 3450 | 0.8965 | 0.89 |
114
+ | 0.0 | 47.0 | 3525 | 0.8892 | 0.8933 |
115
+ | 0.0001 | 48.0 | 3600 | 0.9072 | 0.8933 |
116
+ | 0.0024 | 49.0 | 3675 | 0.9074 | 0.8933 |
117
+ | 0.0054 | 50.0 | 3750 | 0.9075 | 0.895 |
118
+
119
+
120
+ ### Framework versions
121
+
122
+ - Transformers 4.35.2
123
+ - Pytorch 2.1.0+cu118
124
+ - Datasets 2.15.0
125
+ - Tokenizers 0.15.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d41f423ee235e2751b92d87eacaeddb4b52d68edc7d7b7e37615d6f01e106583
3
  size 343083404
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96874278668f998950a047424a5a73e9dfdc19159b957f32ceb208af40f539f4
3
  size 343083404
runs/Dec01_09-51-46_1242d03470a0/events.out.tfevents.1701424308.1242d03470a0.3093.6 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9fe22f60ef1236eb52fe96c02232e24f8d6b93dd2915f43ae2840926c96901ea
3
- size 79874
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb851a79392b135d26c7aa74ad3a08e1cf576dc671a58d8b74cae613a47c25a3
3
+ size 80228