hkivancoral commited on
Commit
297791c
·
1 Parent(s): 9ffa5b4

End of training

Browse files
README.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/beit-base-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: smids_1x_beit_base_adamax_00001_fold5
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: test
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.89
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # smids_1x_beit_base_adamax_00001_fold5
32
+
33
+ This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.6882
36
+ - Accuracy: 0.89
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 1e-05
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 50
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 0.3992 | 1.0 | 75 | 0.3544 | 0.845 |
69
+ | 0.2938 | 2.0 | 150 | 0.2944 | 0.88 |
70
+ | 0.2043 | 3.0 | 225 | 0.2889 | 0.8733 |
71
+ | 0.1457 | 4.0 | 300 | 0.2668 | 0.8917 |
72
+ | 0.1371 | 5.0 | 375 | 0.2691 | 0.8833 |
73
+ | 0.1186 | 6.0 | 450 | 0.2876 | 0.8733 |
74
+ | 0.0675 | 7.0 | 525 | 0.2905 | 0.895 |
75
+ | 0.0675 | 8.0 | 600 | 0.3070 | 0.8983 |
76
+ | 0.0951 | 9.0 | 675 | 0.3449 | 0.8917 |
77
+ | 0.0427 | 10.0 | 750 | 0.3642 | 0.885 |
78
+ | 0.0217 | 11.0 | 825 | 0.3880 | 0.8817 |
79
+ | 0.0513 | 12.0 | 900 | 0.3991 | 0.9 |
80
+ | 0.0247 | 13.0 | 975 | 0.4163 | 0.8983 |
81
+ | 0.018 | 14.0 | 1050 | 0.4538 | 0.8883 |
82
+ | 0.0291 | 15.0 | 1125 | 0.4599 | 0.8917 |
83
+ | 0.0096 | 16.0 | 1200 | 0.5126 | 0.89 |
84
+ | 0.0106 | 17.0 | 1275 | 0.5125 | 0.8867 |
85
+ | 0.0447 | 18.0 | 1350 | 0.5410 | 0.8883 |
86
+ | 0.016 | 19.0 | 1425 | 0.5359 | 0.8883 |
87
+ | 0.0033 | 20.0 | 1500 | 0.5522 | 0.8867 |
88
+ | 0.0086 | 21.0 | 1575 | 0.5579 | 0.8883 |
89
+ | 0.0299 | 22.0 | 1650 | 0.5864 | 0.8833 |
90
+ | 0.0058 | 23.0 | 1725 | 0.5904 | 0.8867 |
91
+ | 0.0156 | 24.0 | 1800 | 0.6102 | 0.89 |
92
+ | 0.0161 | 25.0 | 1875 | 0.6210 | 0.8883 |
93
+ | 0.0066 | 26.0 | 1950 | 0.6149 | 0.8883 |
94
+ | 0.0424 | 27.0 | 2025 | 0.6199 | 0.8867 |
95
+ | 0.011 | 28.0 | 2100 | 0.6388 | 0.8867 |
96
+ | 0.0021 | 29.0 | 2175 | 0.6358 | 0.8917 |
97
+ | 0.0014 | 30.0 | 2250 | 0.6319 | 0.8883 |
98
+ | 0.0203 | 31.0 | 2325 | 0.6459 | 0.89 |
99
+ | 0.0221 | 32.0 | 2400 | 0.6739 | 0.8883 |
100
+ | 0.0066 | 33.0 | 2475 | 0.6562 | 0.89 |
101
+ | 0.0119 | 34.0 | 2550 | 0.6704 | 0.885 |
102
+ | 0.0088 | 35.0 | 2625 | 0.6526 | 0.89 |
103
+ | 0.0115 | 36.0 | 2700 | 0.6534 | 0.8867 |
104
+ | 0.0355 | 37.0 | 2775 | 0.6663 | 0.8883 |
105
+ | 0.0376 | 38.0 | 2850 | 0.6538 | 0.89 |
106
+ | 0.0299 | 39.0 | 2925 | 0.6757 | 0.8867 |
107
+ | 0.0019 | 40.0 | 3000 | 0.6764 | 0.8883 |
108
+ | 0.0235 | 41.0 | 3075 | 0.6776 | 0.89 |
109
+ | 0.0081 | 42.0 | 3150 | 0.6798 | 0.8883 |
110
+ | 0.0053 | 43.0 | 3225 | 0.6758 | 0.8883 |
111
+ | 0.0234 | 44.0 | 3300 | 0.6788 | 0.8933 |
112
+ | 0.0053 | 45.0 | 3375 | 0.6853 | 0.8883 |
113
+ | 0.0121 | 46.0 | 3450 | 0.6875 | 0.8867 |
114
+ | 0.001 | 47.0 | 3525 | 0.6878 | 0.8883 |
115
+ | 0.0104 | 48.0 | 3600 | 0.6872 | 0.89 |
116
+ | 0.0042 | 49.0 | 3675 | 0.6870 | 0.8883 |
117
+ | 0.0115 | 50.0 | 3750 | 0.6882 | 0.89 |
118
+
119
+
120
+ ### Framework versions
121
+
122
+ - Transformers 4.35.2
123
+ - Pytorch 2.1.0+cu118
124
+ - Datasets 2.15.0
125
+ - Tokenizers 0.15.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1f46cdcdb96ab89eeb71b8885b0e955074ec49013a731a165540cac9e1f64794
3
  size 343083404
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9326e8bea77007ec539a35db70f8e0ba8aaa025300cab4a688415046ba0d1c1a
3
  size 343083404
runs/Dec01_00-20-27_1242d03470a0/events.out.tfevents.1701390036.1242d03470a0.3093.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6c50ea654924ce50afa49b6ea27f58e5efb429589f34a87e2cee47ad4317424c
3
- size 79883
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4ea705a134c4af05513125a9a55ccc88edeaee637270c4f8d71cc72871ae6fe
3
+ size 80237