File size: 4,819 Bytes
9bd9d1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_small_rms_0001_fold3
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8372093023255814
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_deit_small_rms_0001_fold3

This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8513
- Accuracy: 0.8372

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.4647        | 1.0   | 28   | 1.8602          | 0.2558   |
| 1.3185        | 2.0   | 56   | 1.0840          | 0.4884   |
| 0.9898        | 3.0   | 84   | 1.3302          | 0.3721   |
| 0.9442        | 4.0   | 112  | 1.0743          | 0.5349   |
| 0.6714        | 5.0   | 140  | 1.1638          | 0.5814   |
| 0.5907        | 6.0   | 168  | 0.8481          | 0.7442   |
| 0.3843        | 7.0   | 196  | 0.5582          | 0.7907   |
| 0.2836        | 8.0   | 224  | 0.9826          | 0.6977   |
| 0.163         | 9.0   | 252  | 0.9953          | 0.7907   |
| 0.0747        | 10.0  | 280  | 0.9182          | 0.8140   |
| 0.0702        | 11.0  | 308  | 0.8756          | 0.7907   |
| 0.0697        | 12.0  | 336  | 1.2367          | 0.7907   |
| 0.0531        | 13.0  | 364  | 1.5496          | 0.7442   |
| 0.0055        | 14.0  | 392  | 1.2182          | 0.8140   |
| 0.0148        | 15.0  | 420  | 1.4816          | 0.8140   |
| 0.0259        | 16.0  | 448  | 1.3748          | 0.7907   |
| 0.0208        | 17.0  | 476  | 1.5049          | 0.7209   |
| 0.0278        | 18.0  | 504  | 1.1689          | 0.8140   |
| 0.0002        | 19.0  | 532  | 1.6137          | 0.8372   |
| 0.0001        | 20.0  | 560  | 1.6368          | 0.8372   |
| 0.0           | 21.0  | 588  | 1.6426          | 0.8372   |
| 0.0           | 22.0  | 616  | 1.6498          | 0.8372   |
| 0.0           | 23.0  | 644  | 1.6573          | 0.8372   |
| 0.0           | 24.0  | 672  | 1.6654          | 0.8372   |
| 0.0           | 25.0  | 700  | 1.6746          | 0.8372   |
| 0.0           | 26.0  | 728  | 1.6832          | 0.8372   |
| 0.0           | 27.0  | 756  | 1.6985          | 0.8372   |
| 0.0           | 28.0  | 784  | 1.7057          | 0.8372   |
| 0.0           | 29.0  | 812  | 1.7143          | 0.8372   |
| 0.0           | 30.0  | 840  | 1.7226          | 0.8372   |
| 0.0           | 31.0  | 868  | 1.7340          | 0.8372   |
| 0.0           | 32.0  | 896  | 1.7422          | 0.8372   |
| 0.0           | 33.0  | 924  | 1.7506          | 0.8372   |
| 0.0           | 34.0  | 952  | 1.7590          | 0.8372   |
| 0.0           | 35.0  | 980  | 1.7673          | 0.8372   |
| 0.0           | 36.0  | 1008 | 1.7761          | 0.8372   |
| 0.0           | 37.0  | 1036 | 1.7852          | 0.8372   |
| 0.0           | 38.0  | 1064 | 1.7939          | 0.8372   |
| 0.0           | 39.0  | 1092 | 1.8014          | 0.8372   |
| 0.0           | 40.0  | 1120 | 1.8097          | 0.8372   |
| 0.0           | 41.0  | 1148 | 1.8172          | 0.8372   |
| 0.0           | 42.0  | 1176 | 1.8240          | 0.8372   |
| 0.0           | 43.0  | 1204 | 1.8302          | 0.8372   |
| 0.0           | 44.0  | 1232 | 1.8365          | 0.8372   |
| 0.0           | 45.0  | 1260 | 1.8414          | 0.8372   |
| 0.0           | 46.0  | 1288 | 1.8453          | 0.8372   |
| 0.0           | 47.0  | 1316 | 1.8499          | 0.8372   |
| 0.0           | 48.0  | 1344 | 1.8512          | 0.8372   |
| 0.0           | 49.0  | 1372 | 1.8513          | 0.8372   |
| 0.0           | 50.0  | 1400 | 1.8513          | 0.8372   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0