--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_sgd_lr0001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.24444444444444444 --- # hushem_1x_deit_tiny_sgd_lr0001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5010 - Accuracy: 0.2444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.5317 | 0.2667 | | 1.5768 | 2.0 | 12 | 1.5295 | 0.2444 | | 1.5768 | 3.0 | 18 | 1.5277 | 0.2444 | | 1.5217 | 4.0 | 24 | 1.5259 | 0.2444 | | 1.5806 | 5.0 | 30 | 1.5243 | 0.2444 | | 1.5806 | 6.0 | 36 | 1.5226 | 0.2444 | | 1.5608 | 7.0 | 42 | 1.5211 | 0.2444 | | 1.5608 | 8.0 | 48 | 1.5198 | 0.2444 | | 1.5538 | 9.0 | 54 | 1.5184 | 0.2444 | | 1.5354 | 10.0 | 60 | 1.5172 | 0.2444 | | 1.5354 | 11.0 | 66 | 1.5159 | 0.2444 | | 1.5529 | 12.0 | 72 | 1.5148 | 0.2444 | | 1.5529 | 13.0 | 78 | 1.5137 | 0.2444 | | 1.5094 | 14.0 | 84 | 1.5127 | 0.2444 | | 1.5228 | 15.0 | 90 | 1.5118 | 0.2444 | | 1.5228 | 16.0 | 96 | 1.5108 | 0.2444 | | 1.5295 | 17.0 | 102 | 1.5100 | 0.2444 | | 1.5295 | 18.0 | 108 | 1.5092 | 0.2444 | | 1.5298 | 19.0 | 114 | 1.5084 | 0.2444 | | 1.5372 | 20.0 | 120 | 1.5077 | 0.2444 | | 1.5372 | 21.0 | 126 | 1.5071 | 0.2444 | | 1.5336 | 22.0 | 132 | 1.5065 | 0.2444 | | 1.5336 | 23.0 | 138 | 1.5059 | 0.2444 | | 1.5077 | 24.0 | 144 | 1.5053 | 0.2444 | | 1.5022 | 25.0 | 150 | 1.5049 | 0.2444 | | 1.5022 | 26.0 | 156 | 1.5044 | 0.2444 | | 1.5158 | 27.0 | 162 | 1.5040 | 0.2444 | | 1.5158 | 28.0 | 168 | 1.5036 | 0.2444 | | 1.4961 | 29.0 | 174 | 1.5032 | 0.2444 | | 1.5155 | 30.0 | 180 | 1.5029 | 0.2444 | | 1.5155 | 31.0 | 186 | 1.5025 | 0.2444 | | 1.5093 | 32.0 | 192 | 1.5022 | 0.2444 | | 1.5093 | 33.0 | 198 | 1.5020 | 0.2444 | | 1.4596 | 34.0 | 204 | 1.5017 | 0.2444 | | 1.4894 | 35.0 | 210 | 1.5015 | 0.2444 | | 1.4894 | 36.0 | 216 | 1.5014 | 0.2444 | | 1.5058 | 37.0 | 222 | 1.5012 | 0.2444 | | 1.5058 | 38.0 | 228 | 1.5011 | 0.2444 | | 1.4675 | 39.0 | 234 | 1.5010 | 0.2444 | | 1.4822 | 40.0 | 240 | 1.5010 | 0.2444 | | 1.4822 | 41.0 | 246 | 1.5010 | 0.2444 | | 1.5008 | 42.0 | 252 | 1.5010 | 0.2444 | | 1.5008 | 43.0 | 258 | 1.5010 | 0.2444 | | 1.5075 | 44.0 | 264 | 1.5010 | 0.2444 | | 1.5338 | 45.0 | 270 | 1.5010 | 0.2444 | | 1.5338 | 46.0 | 276 | 1.5010 | 0.2444 | | 1.5016 | 47.0 | 282 | 1.5010 | 0.2444 | | 1.5016 | 48.0 | 288 | 1.5010 | 0.2444 | | 1.4777 | 49.0 | 294 | 1.5010 | 0.2444 | | 1.4813 | 50.0 | 300 | 1.5010 | 0.2444 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1