--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_beit_base_sgd_001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.43902439024390244 --- # hushem_1x_beit_base_sgd_001_fold5 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3101 - Accuracy: 0.4390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.5856 | 0.2439 | | 1.5446 | 2.0 | 12 | 1.5524 | 0.2683 | | 1.5446 | 3.0 | 18 | 1.5246 | 0.3171 | | 1.4921 | 4.0 | 24 | 1.5015 | 0.3171 | | 1.4491 | 5.0 | 30 | 1.4859 | 0.3415 | | 1.4491 | 6.0 | 36 | 1.4721 | 0.3415 | | 1.4253 | 7.0 | 42 | 1.4615 | 0.3415 | | 1.4253 | 8.0 | 48 | 1.4471 | 0.3659 | | 1.3656 | 9.0 | 54 | 1.4347 | 0.3902 | | 1.3889 | 10.0 | 60 | 1.4270 | 0.3902 | | 1.3889 | 11.0 | 66 | 1.4192 | 0.4146 | | 1.3303 | 12.0 | 72 | 1.4108 | 0.4146 | | 1.3303 | 13.0 | 78 | 1.4040 | 0.4146 | | 1.3227 | 14.0 | 84 | 1.3958 | 0.4146 | | 1.3003 | 15.0 | 90 | 1.3889 | 0.4146 | | 1.3003 | 16.0 | 96 | 1.3827 | 0.4146 | | 1.3072 | 17.0 | 102 | 1.3788 | 0.3902 | | 1.3072 | 18.0 | 108 | 1.3733 | 0.4146 | | 1.2978 | 19.0 | 114 | 1.3664 | 0.4390 | | 1.268 | 20.0 | 120 | 1.3623 | 0.4390 | | 1.268 | 21.0 | 126 | 1.3569 | 0.4390 | | 1.265 | 22.0 | 132 | 1.3511 | 0.4390 | | 1.265 | 23.0 | 138 | 1.3470 | 0.4634 | | 1.2559 | 24.0 | 144 | 1.3424 | 0.4390 | | 1.2443 | 25.0 | 150 | 1.3395 | 0.4146 | | 1.2443 | 26.0 | 156 | 1.3357 | 0.4390 | | 1.2468 | 27.0 | 162 | 1.3318 | 0.4390 | | 1.2468 | 28.0 | 168 | 1.3281 | 0.4390 | | 1.2381 | 29.0 | 174 | 1.3262 | 0.4390 | | 1.2466 | 30.0 | 180 | 1.3249 | 0.4146 | | 1.2466 | 31.0 | 186 | 1.3215 | 0.4390 | | 1.234 | 32.0 | 192 | 1.3185 | 0.4390 | | 1.234 | 33.0 | 198 | 1.3170 | 0.4390 | | 1.2144 | 34.0 | 204 | 1.3158 | 0.4390 | | 1.2407 | 35.0 | 210 | 1.3143 | 0.4390 | | 1.2407 | 36.0 | 216 | 1.3132 | 0.4390 | | 1.2238 | 37.0 | 222 | 1.3125 | 0.4390 | | 1.2238 | 38.0 | 228 | 1.3116 | 0.4390 | | 1.221 | 39.0 | 234 | 1.3110 | 0.4390 | | 1.1985 | 40.0 | 240 | 1.3104 | 0.4390 | | 1.1985 | 41.0 | 246 | 1.3101 | 0.4390 | | 1.2078 | 42.0 | 252 | 1.3101 | 0.4390 | | 1.2078 | 43.0 | 258 | 1.3101 | 0.4390 | | 1.1965 | 44.0 | 264 | 1.3101 | 0.4390 | | 1.2151 | 45.0 | 270 | 1.3101 | 0.4390 | | 1.2151 | 46.0 | 276 | 1.3101 | 0.4390 | | 1.2187 | 47.0 | 282 | 1.3101 | 0.4390 | | 1.2187 | 48.0 | 288 | 1.3101 | 0.4390 | | 1.1908 | 49.0 | 294 | 1.3101 | 0.4390 | | 1.1985 | 50.0 | 300 | 1.3101 | 0.4390 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0