File size: 4,824 Bytes
840a0b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_beit_base_adamax_00001_fold5
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8048780487804879
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_1x_beit_base_adamax_00001_fold5

This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5012
- Accuracy: 0.8049

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 6    | 1.3123          | 0.3415   |
| 1.3417        | 2.0   | 12   | 1.1955          | 0.5610   |
| 1.3417        | 3.0   | 18   | 1.0858          | 0.6098   |
| 0.9733        | 4.0   | 24   | 0.9881          | 0.6098   |
| 0.7755        | 5.0   | 30   | 0.9019          | 0.6829   |
| 0.7755        | 6.0   | 36   | 0.8266          | 0.7073   |
| 0.5866        | 7.0   | 42   | 0.7789          | 0.7073   |
| 0.5866        | 8.0   | 48   | 0.7323          | 0.7561   |
| 0.4247        | 9.0   | 54   | 0.6965          | 0.7805   |
| 0.3366        | 10.0  | 60   | 0.6709          | 0.8049   |
| 0.3366        | 11.0  | 66   | 0.6414          | 0.8049   |
| 0.2406        | 12.0  | 72   | 0.6309          | 0.8049   |
| 0.2406        | 13.0  | 78   | 0.6283          | 0.8049   |
| 0.1807        | 14.0  | 84   | 0.5831          | 0.7805   |
| 0.1504        | 15.0  | 90   | 0.5587          | 0.8049   |
| 0.1504        | 16.0  | 96   | 0.5622          | 0.8049   |
| 0.1175        | 17.0  | 102  | 0.5998          | 0.8049   |
| 0.1175        | 18.0  | 108  | 0.5569          | 0.8049   |
| 0.1107        | 19.0  | 114  | 0.5178          | 0.7805   |
| 0.0834        | 20.0  | 120  | 0.5243          | 0.7805   |
| 0.0834        | 21.0  | 126  | 0.5491          | 0.8293   |
| 0.0685        | 22.0  | 132  | 0.5414          | 0.8049   |
| 0.0685        | 23.0  | 138  | 0.5016          | 0.8049   |
| 0.0622        | 24.0  | 144  | 0.5127          | 0.8049   |
| 0.0553        | 25.0  | 150  | 0.5123          | 0.8049   |
| 0.0553        | 26.0  | 156  | 0.5115          | 0.8293   |
| 0.0606        | 27.0  | 162  | 0.5050          | 0.8293   |
| 0.0606        | 28.0  | 168  | 0.4920          | 0.8293   |
| 0.0617        | 29.0  | 174  | 0.4931          | 0.8049   |
| 0.042         | 30.0  | 180  | 0.5002          | 0.8049   |
| 0.042         | 31.0  | 186  | 0.5113          | 0.8049   |
| 0.0437        | 32.0  | 192  | 0.5113          | 0.8049   |
| 0.0437        | 33.0  | 198  | 0.5177          | 0.8049   |
| 0.0387        | 34.0  | 204  | 0.5166          | 0.8049   |
| 0.0462        | 35.0  | 210  | 0.5121          | 0.8049   |
| 0.0462        | 36.0  | 216  | 0.4996          | 0.8049   |
| 0.0301        | 37.0  | 222  | 0.4928          | 0.8049   |
| 0.0301        | 38.0  | 228  | 0.4955          | 0.8049   |
| 0.0363        | 39.0  | 234  | 0.4997          | 0.8049   |
| 0.0291        | 40.0  | 240  | 0.5021          | 0.8049   |
| 0.0291        | 41.0  | 246  | 0.5012          | 0.8049   |
| 0.0319        | 42.0  | 252  | 0.5012          | 0.8049   |
| 0.0319        | 43.0  | 258  | 0.5012          | 0.8049   |
| 0.0305        | 44.0  | 264  | 0.5012          | 0.8049   |
| 0.0298        | 45.0  | 270  | 0.5012          | 0.8049   |
| 0.0298        | 46.0  | 276  | 0.5012          | 0.8049   |
| 0.0437        | 47.0  | 282  | 0.5012          | 0.8049   |
| 0.0437        | 48.0  | 288  | 0.5012          | 0.8049   |
| 0.03          | 49.0  | 294  | 0.5012          | 0.8049   |
| 0.0346        | 50.0  | 300  | 0.5012          | 0.8049   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0