hiroki-rad
commited on
update
Browse files
README.md
CHANGED
@@ -20,6 +20,17 @@ pipeline_tag: text-classification
|
|
20 |
|
21 |
|
22 |
## Model Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
### Model Description
|
25 |
|
@@ -35,31 +46,20 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
35 |
- **License:** [More Information Needed]
|
36 |
- **Finetuned from model [optional]:** [cl-tohoku/bert-base-japanese-v3]
|
37 |
|
38 |
-
### Model Sources [optional]
|
39 |
-
|
40 |
-
<!-- Provide the basic links for the model. -->
|
41 |
-
|
42 |
-
- **Repository:** [More Information Needed]
|
43 |
-
- **Paper [optional]:** [More Information Needed]
|
44 |
-
- **Demo [optional]:** [More Information Needed]
|
45 |
-
|
46 |
-
## Uses
|
47 |
-
|
48 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
49 |
-
|
50 |
### Direct Use
|
51 |
-
|
52 |
from transformers import pipeline
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
63 |
|
64 |
def preprocess_text_classification(examples: dict[str, list]) -> BatchEncoding:
|
65 |
"""バッチ処理用に修正"""
|
@@ -75,7 +75,7 @@ def preprocess_text_classification(examples: dict[str, list]) -> BatchEncoding:
|
|
75 |
encoded_examples["labels"] = [label2id[label] for label in examples["labels"]]
|
76 |
return encoded_examples
|
77 |
|
78 |
-
|
79 |
test_data = test_data.to_pandas()
|
80 |
test_data["labels"] = test_data["labels"].apply(lambda x: label2id[x])
|
81 |
test_data
|
@@ -88,13 +88,11 @@ label2id = {label: id for id, label in enumerate(class_label)}
|
|
88 |
id2label = {id: label for id, label in enumerate(class_label)}
|
89 |
|
90 |
results: list[dict[str, float | str]] = []
|
91 |
-
|
92 |
for i, example in tqdm(enumerate(test_data.itertuples())):
|
93 |
# モデルの予測結果を取得
|
94 |
model_prediction = classify_pipe(example.questions)[0]
|
95 |
# 正解のラベルIDをラベル名に変換
|
96 |
true_label = id2label[example.labels]
|
97 |
-
|
98 |
results.append(
|
99 |
{
|
100 |
"example_id": i,
|
@@ -103,158 +101,4 @@ for i, example in tqdm(enumerate(test_data.itertuples())):
|
|
103 |
"true_label": true_label,
|
104 |
}
|
105 |
)
|
106 |
-
|
107 |
-
### Downstream Use [optional]
|
108 |
-
|
109 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
110 |
-
|
111 |
-
[More Information Needed]
|
112 |
-
|
113 |
-
### Out-of-Scope Use
|
114 |
-
|
115 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
116 |
-
|
117 |
-
[More Information Needed]
|
118 |
-
|
119 |
-
## Bias, Risks, and Limitations
|
120 |
-
|
121 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
122 |
-
|
123 |
-
[More Information Needed]
|
124 |
-
|
125 |
-
### Recommendations
|
126 |
-
|
127 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
128 |
-
|
129 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
130 |
-
|
131 |
-
## How to Get Started with the Model
|
132 |
-
|
133 |
-
Use the code below to get started with the model.
|
134 |
-
|
135 |
-
[More Information Needed]
|
136 |
-
|
137 |
-
## Training Details
|
138 |
-
|
139 |
-
### Training Data
|
140 |
-
|
141 |
-
<!https://huggingface.co/datasets/elyza/ELYZA-tasks-100>
|
142 |
-
|
143 |
-
[More Information Needed]
|
144 |
-
|
145 |
-
### Training Procedure
|
146 |
-
|
147 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
148 |
-
|
149 |
-
#### Preprocessing [optional]
|
150 |
-
|
151 |
-
[More Information Needed]
|
152 |
-
|
153 |
-
|
154 |
-
#### Training Hyperparameters
|
155 |
-
|
156 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
157 |
-
|
158 |
-
#### Speeds, Sizes, Times [optional]
|
159 |
-
|
160 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
161 |
-
|
162 |
-
[More Information Needed]
|
163 |
-
|
164 |
-
## Evaluation
|
165 |
-
|
166 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
167 |
-
|
168 |
-
### Testing Data, Factors & Metrics
|
169 |
-
|
170 |
-
#### Testing Data
|
171 |
-
|
172 |
-
<!-- This should link to a Dataset Card if possible. -->
|
173 |
-
|
174 |
-
[More Information Needed]
|
175 |
-
|
176 |
-
#### Factors
|
177 |
-
|
178 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
179 |
-
|
180 |
-
[More Information Needed]
|
181 |
-
|
182 |
-
#### Metrics
|
183 |
-
|
184 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
185 |
-
|
186 |
-
[More Information Needed]
|
187 |
-
|
188 |
-
### Results
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
-
|
192 |
-
#### Summary
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
## Model Examination [optional]
|
197 |
-
|
198 |
-
<!-- Relevant interpretability work for the model goes here -->
|
199 |
-
|
200 |
-
[More Information Needed]
|
201 |
-
|
202 |
-
## Environmental Impact
|
203 |
-
|
204 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
205 |
-
|
206 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
207 |
-
|
208 |
-
- **Hardware Type:** [More Information Needed]
|
209 |
-
- **Hours used:** [More Information Needed]
|
210 |
-
- **Cloud Provider:** [More Information Needed]
|
211 |
-
- **Compute Region:** [More Information Needed]
|
212 |
-
- **Carbon Emitted:** [More Information Needed]
|
213 |
-
|
214 |
-
## Technical Specifications [optional]
|
215 |
-
|
216 |
-
### Model Architecture and Objective
|
217 |
-
|
218 |
-
[More Information Needed]
|
219 |
-
|
220 |
-
### Compute Infrastructure
|
221 |
-
|
222 |
-
[More Information Needed]
|
223 |
-
|
224 |
-
#### Hardware
|
225 |
-
|
226 |
-
[More Information Needed]
|
227 |
-
|
228 |
-
#### Software
|
229 |
-
|
230 |
-
[More Information Needed]
|
231 |
-
|
232 |
-
## Citation [optional]
|
233 |
-
|
234 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
235 |
-
|
236 |
-
**BibTeX:**
|
237 |
-
|
238 |
-
[More Information Needed]
|
239 |
-
|
240 |
-
**APA:**
|
241 |
-
|
242 |
-
[More Information Needed]
|
243 |
-
|
244 |
-
## Glossary [optional]
|
245 |
-
|
246 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
247 |
-
|
248 |
-
[More Information Needed]
|
249 |
-
|
250 |
-
## More Information [optional]
|
251 |
-
|
252 |
-
[More Information Needed]
|
253 |
-
|
254 |
-
## Model Card Authors [optional]
|
255 |
-
|
256 |
-
[More Information Needed]
|
257 |
-
|
258 |
-
## Model Card Contact
|
259 |
-
|
260 |
-
[More Information Needed]
|
|
|
20 |
|
21 |
|
22 |
## Model Details
|
23 |
+
elyzaタスク100のタスクのinputを入力してタスクを分類するためのタスクです。
|
24 |
+
タスクの分類は以下のものです。
|
25 |
+
|
26 |
+
- 知識説明型 Knowledge Explanation
|
27 |
+
- 創作型 Creative Generation
|
28 |
+
- 分析推論型 Analytical Reasoning
|
29 |
+
- 課題解決型 Task Solution
|
30 |
+
- 情報抽出型 Information Extraction
|
31 |
+
- 計算・手順型 Step-by-Step Calculation
|
32 |
+
- 意見・視点型 Opinion-Perspective
|
33 |
+
- ロールプレイ型 Role-Play Response
|
34 |
|
35 |
### Model Description
|
36 |
|
|
|
46 |
- **License:** [More Information Needed]
|
47 |
- **Finetuned from model [optional]:** [cl-tohoku/bert-base-japanese-v3]
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
### Direct Use
|
50 |
+
```python
|
51 |
from transformers import pipeline
|
52 |
|
53 |
+
label2id = {
|
54 |
+
'Task_Solution': 0,
|
55 |
+
'Creative_Generation': 1,
|
56 |
+
'Knowledge_Explanation': 2,
|
57 |
+
'Analytical_Reasoning': 3,
|
58 |
+
'Information_Extraction': 4,
|
59 |
+
'Step_by_Step_Calculation': 5,
|
60 |
+
'Role_Play_Response': 6,
|
61 |
+
'Opinion_Perspective': 7
|
62 |
+
}
|
63 |
|
64 |
def preprocess_text_classification(examples: dict[str, list]) -> BatchEncoding:
|
65 |
"""バッチ処理用に修正"""
|
|
|
75 |
encoded_examples["labels"] = [label2id[label] for label in examples["labels"]]
|
76 |
return encoded_examples
|
77 |
|
78 |
+
# 使用するデータセット
|
79 |
test_data = test_data.to_pandas()
|
80 |
test_data["labels"] = test_data["labels"].apply(lambda x: label2id[x])
|
81 |
test_data
|
|
|
88 |
id2label = {id: label for id, label in enumerate(class_label)}
|
89 |
|
90 |
results: list[dict[str, float | str]] = []
|
|
|
91 |
for i, example in tqdm(enumerate(test_data.itertuples())):
|
92 |
# モデルの予測結果を取得
|
93 |
model_prediction = classify_pipe(example.questions)[0]
|
94 |
# 正解のラベルIDをラベル名に変換
|
95 |
true_label = id2label[example.labels]
|
|
|
96 |
results.append(
|
97 |
{
|
98 |
"example_id": i,
|
|
|
101 |
"true_label": true_label,
|
102 |
}
|
103 |
)
|
104 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|