hiiamsid commited on
Commit
498c752
·
1 Parent(s): 9dc5144

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -6
README.md CHANGED
@@ -1,5 +1,7 @@
1
  ---
2
  pipeline_tag: sentence-similarity
 
 
3
  tags:
4
  - sentence-transformers
5
  - feature-extraction
@@ -7,7 +9,7 @@ tags:
7
  - transformers
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
@@ -27,7 +29,7 @@ Then you can use the model like this:
27
  from sentence_transformers import SentenceTransformer
28
  sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('{MODEL_NAME}')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
@@ -73,9 +75,10 @@ print(sentence_embeddings)
73
 
74
 
75
  ## Evaluation Results
76
-
77
- <!--- Describe how your model was evaluated -->
78
-
 
79
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
80
 
81
 
@@ -122,4 +125,8 @@ SentenceTransformer(
122
 
123
  ## Citing & Authors
124
 
125
- <!--- Describe where people can find more information -->
 
 
 
 
 
1
  ---
2
  pipeline_tag: sentence-similarity
3
+ language:
4
+ - hi
5
  tags:
6
  - sentence-transformers
7
  - feature-extraction
 
9
  - transformers
10
  ---
11
 
12
+ # hiiamsid/sentence_similarity_hindi
13
 
14
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
 
 
29
  from sentence_transformers import SentenceTransformer
30
  sentences = ["This is an example sentence", "Each sentence is converted"]
31
 
32
+ model = SentenceTransformer('hiiamsid/sentence_similarity_hindi')
33
  embeddings = model.encode(sentences)
34
  print(embeddings)
35
  ```
 
75
 
76
 
77
  ## Evaluation Results
78
+ ```
79
+ cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
80
+ 0.825825032,0.8227195932,0.8127990959,0.8214681478,0.8111641963,0.8194870279,0.8096042841,0.8061808483
81
+ ```
82
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
83
 
84
 
 
125
 
126
  ## Citing & Authors
127
 
128
+ <!--- Describe where people can find more information -->
129
+ - Model: [setu4993/LaBSE]
130
+ (https://huggingface.co/setu4993/LaBSE)
131
+ - Sentence Transformers [Semantic Textual Similarity]
132
+ (https://www.sbert.net/examples/training/sts/README.html)