Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
|
|
|
|
3 |
tags:
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
@@ -7,7 +9,7 @@ tags:
|
|
7 |
- transformers
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
@@ -27,7 +29,7 @@ Then you can use the model like this:
|
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
|
30 |
-
model = SentenceTransformer('
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
@@ -73,9 +75,10 @@ print(sentence_embeddings)
|
|
73 |
|
74 |
|
75 |
## Evaluation Results
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
80 |
|
81 |
|
@@ -122,4 +125,8 @@ SentenceTransformer(
|
|
122 |
|
123 |
## Citing & Authors
|
124 |
|
125 |
-
<!--- Describe where people can find more information -->
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
+
language:
|
4 |
+
- hi
|
5 |
tags:
|
6 |
- sentence-transformers
|
7 |
- feature-extraction
|
|
|
9 |
- transformers
|
10 |
---
|
11 |
|
12 |
+
# hiiamsid/sentence_similarity_hindi
|
13 |
|
14 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
15 |
|
|
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
|
32 |
+
model = SentenceTransformer('hiiamsid/sentence_similarity_hindi')
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
35 |
```
|
|
|
75 |
|
76 |
|
77 |
## Evaluation Results
|
78 |
+
```
|
79 |
+
cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
80 |
+
0.825825032,0.8227195932,0.8127990959,0.8214681478,0.8111641963,0.8194870279,0.8096042841,0.8061808483
|
81 |
+
```
|
82 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
83 |
|
84 |
|
|
|
125 |
|
126 |
## Citing & Authors
|
127 |
|
128 |
+
<!--- Describe where people can find more information -->
|
129 |
+
- Model: [setu4993/LaBSE]
|
130 |
+
(https://huggingface.co/setu4993/LaBSE)
|
131 |
+
- Sentence Transformers [Semantic Textual Similarity]
|
132 |
+
(https://www.sbert.net/examples/training/sts/README.html)
|