hieuhocnlp
commited on
Commit
·
737e9a2
1
Parent(s):
fb2488f
Upload blstm_model.py
Browse files- blstm_model.py +44 -0
blstm_model.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import PyTorchModelHubMixin
|
2 |
+
|
3 |
+
from torch import nn
|
4 |
+
import torch
|
5 |
+
|
6 |
+
class BiLSTM(nn.Module, PyTorchModelHubMixin):
|
7 |
+
def __init__(self, vocab_size=23626, embed_dim=100,
|
8 |
+
num_layers=1, hidden_dim=256, dropout=0.33,
|
9 |
+
output_dim=128, predict_output=10, device="cuda:0"):
|
10 |
+
super().__init__()
|
11 |
+
self.hidden_dim = hidden_dim
|
12 |
+
self.predict_output = predict_output
|
13 |
+
|
14 |
+
self.embed_layer = nn.Embedding(vocab_size, embed_dim, padding_idx=0)
|
15 |
+
self.biLSTM = nn.LSTM(input_size=embed_dim,
|
16 |
+
hidden_size=hidden_dim // 2, # BiLSTM will concatenate the 2 directional LSTMs
|
17 |
+
num_layers=num_layers,
|
18 |
+
bidirectional=True,
|
19 |
+
batch_first=True)
|
20 |
+
self.linear = nn.Linear(hidden_dim, output_dim)
|
21 |
+
self.dropout = nn.Dropout(dropout)
|
22 |
+
self.elu = nn.ELU()
|
23 |
+
self.fc = nn.Linear(output_dim, predict_output)
|
24 |
+
self.device_ = device
|
25 |
+
|
26 |
+
def forward(self, input): # input is a list of indices, shape batch_size, seq_len
|
27 |
+
x = self.embed_layer(input) # batch_size, seq_len, 100 (This is only when batch_first=True!!!!)
|
28 |
+
batch_size = x.size(0)
|
29 |
+
hidden, cell = self.init_hidden(batch_size)
|
30 |
+
|
31 |
+
out, hidden = self.biLSTM(x, (hidden, cell)) # seq_len, batch_size, (hidden_dim//2) * 2
|
32 |
+
|
33 |
+
out = self.dropout(out)
|
34 |
+
|
35 |
+
out = self.elu(self.linear(out)) # self.linear(out): batch_size, seq_len, output_dim
|
36 |
+
|
37 |
+
out = self.fc(out)
|
38 |
+
|
39 |
+
return out, hidden
|
40 |
+
|
41 |
+
def init_hidden(self, batch_size):
|
42 |
+
hidden = torch.zeros(2, batch_size, self.hidden_dim//2, device=self.device_)
|
43 |
+
cell = torch.zeros(2, batch_size, self.hidden_dim//2, device=self.device_)
|
44 |
+
return hidden, cell
|