--- license: cc-by-nc-sa-4.0 language: - en library_name: transformers pipeline_tag: text-generation base_model: kyujinpy/Sakura-SOLAR-Instruct model_creator: KyujinHan model_name: Sakura Solar Instruct tags: - exl2 --- # Sakura-SOLAR-Instruct - Model creator: [KyujinHan](https://huggingface.co/kyujinpy) - Original model: [Merged AGI 7B](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct) - Is a merge of: - [VAGOsolutions/SauerkrautLM-SOLAR-Instruct](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct) - [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) ## Quantizations Measured using ExLlamav2_HF and 4096 max_seq_len with [Oobabooga's Text Generation WebUI](https://github.com/oobabooga/text-generation-webui/tree/main). I also provided zipped quantization because a lot of people find gguf single download convenient. Zipped quantization is relatively smaller in size to download. After extracted, you can use the model folder as usual. Use [TheBloke's 4bit-32g quants](https://huggingface.co/TheBloke/Sakura-SOLAR-Instruct-GPTQ/tree/gptq-4bit-32g-actorder_True) (7.4GB VRAM usage) if you have 8GB cards. | Branch | BPW | Folder Size | Zipped File Size | VRAM Usage | Description | | ------ | --- | ----------- | ---------------- | ---------- | ----------- | [3.0bpw](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/3.0bpw)/[3.0bpw-zip](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/3.0bpw-zip)|3.0BPW|4.01GB|3.72GB|5.1 GB|For >=6GB VRAM cards with idle VRAM atleast or below 500MB (headroom for other things) [5.0bpw (main)](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/main)/[5.0bpw-zip](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/5.0bpw-zip)|5.0BPW|6.45GB|6.3GB|7.7 GB|For >=10GB VRAM cards [6.0bpw](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/6.0bpw)/[6.0bpw-zip](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/6.0bpw-zip)|6.0BPW|7.66GB|7.4GB|9.0 GB|For >=10GB VRAM cards with idle VRAM atleast or below 500MB (headroom for other things) [7.0bpw](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/7.0bpw)/[7.0bpw-zip](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/7.0bpw-zip)|7.0BPW|8.89GB|8.6GB|10.2 GB|For >=11GB VRAM cards with idle VRAM atleast or below 500MB (headroom for other things) [8.0bpw](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/8.0bpw)/[8.0bpw-zip](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/8.0bpw-zip)|8.0BPW|10.1GB|9.7GB|11.3 GB|For >=12GB VRAM cards with idle VRAM atleast or below 500MB (headroom for other things) ## Calibration Dataset - [argilla/distilabel-math-preference-dpo](https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo) - Training dataset of [VAGOsolutions/SauerkrautLM-SOLAR-Instruct](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct) ## Prompt template: Orca-Hashes From [TheBloke](https://huggingface.co/TheBloke) ``` ### System: {system_message} ### User: {prompt} ### Assistant: ``` ### If you use Oobabooga's Chat tab From my testing, the template "Orca-Mini" or any of the Orca templates produced the best result. Feel free to leave a suggestion if you know better. # Original Info # **Sakura-SOLAR-Instruct** **(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다** ## Model Details **Model Developers** Kyujin Han (kyujinpy) **Method** Using [Mergekit](https://github.com/cg123/mergekit). I shared the information about my model. (training and code) **Please see: [⭐Sakura-SOLAR](https://github.com/KyujinHan/Sakura-SOLAR-DPO).** **Blog** - [Sakura-SOLAR 모델 제작 과정 및 후기](https://kyujinpy.tistory.com/122). # **Model Benchmark** ## Open leaderboard - Follow up as [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | --- | --- | --- | --- | --- | --- | --- | --- | | Sakura-SOLRCA-Instruct-DPO | 74.05 | 71.16 | 88.49 | 66.17 | 72.10 | 82.95 | 63.46 | | Sakura-SOLAR-Instruct-DPO-v2 | 74.14 | 70.90 | 88.41 | 66.48 | 71.86 | 83.43 | 63.76 | | [kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct) | 74.40 | 70.99 | 88.42 | 66.33 | 71.79 | 83.66 | 65.20 > Rank1 2023.12.27 PM 11:50 # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "kyujinpy/Sakura-SOLAR-Instruct" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` ---