Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Merged-AGI-7B
|
2 |
+
|
3 |
+
- Model creator: [KyujinHan](https://huggingface.co/kyujinpy)
|
4 |
+
- Original model: [Merged AGI 7B](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct)
|
5 |
+
|
6 |
+
## EXL2 Quants
|
7 |
+
You can use [TheBloke's GPTQ quants](https://huggingface.co/TheBloke/Sakura-SOLAR-Instruct-GPTQ) for 4bit or lower. I'm providing higher exl2 quants so exllamav2 loader can still be used. Feel free to leave a suggestion for other quants.
|
8 |
+
|
9 |
+
- [5.0bpw (main)](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/main)
|
10 |
+
- [6.0bpw](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/6.0bpw)
|
11 |
+
- [7.0bpw](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/7.0bpw)
|
12 |
+
- [8.0bpw](https://huggingface.co/hgloow/MSakura-SOLAR-Instruct-EXL2/tree/8.0bpw)
|
13 |
+
|
14 |
+
Zipped Quantization (if you want to download a single file)
|
15 |
+
- [5.0bpw](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/5.0bpw-zip)
|
16 |
+
- [6.0bpw](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/6.0bpw-zip)
|
17 |
+
- [7.0bpw](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/7.0bpw-zip)
|
18 |
+
- [8.0bpw](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/8.0bpw-zip)
|
19 |
+
|
20 |
+
## Calibration Dataset
|
21 |
+
Training dataset of Sakura-SOLAR-Instruct child models
|
22 |
+
[argilla/distilabel-math-preference-dpo](https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo)
|
23 |
+
|
24 |
+
## Memory Usage
|
25 |
+
Use [TheBloke's 4bit-32g quants](https://huggingface.co/TheBloke/Sakura-SOLAR-Instruct-GPTQ/tree/gptq-4bit-32g-actorder_True) (7.4GB VRAM usage) if you have 8GB cards.
|
26 |
+
|
27 |
+
Measured using ExLlamaV2 and 4096 max_seq_len with [Oobabooga's Text Generation WebUI](https://github.com/oobabooga/text-generation-webui/tree/main).
|
28 |
+
| Branch | BPW | VRAM Usage | Description |
|
29 |
+
| ------ | --- | ---------- | ----------- |
|
30 |
+
[5.0bpw (main)](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/main)|5.0|7.7 GB|For >10GB VRAM cards
|
31 |
+
[6.0bpw](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/6.0bpw)|6.0|9.0 GB|For >=10GB VRAM cards with idle VRAM atleast or below 500MB (headroom for ui)
|
32 |
+
[7.0bpw](https://huggingface.co/hgloow/Sakura-SOLAR-Instruct-EXL2/tree/7.0bpw)|7.0|10.2 GB|For >=11GB VRAM cards with idle VRAM atleast or below 500MB (headroom for ui)
|
33 |
+
[8.0bpw](https://huggingface.co/hgloow/MSakura-SOLAR-Instruct-EXL2/tree/8.0bpw)|8.0|11.3 GB|For >=12GB VRAM cards with idle VRAM atleast or below 500MB (headroom for ui)
|
34 |
+
|
35 |
+
## Prompt template: Orca-Hashes
|
36 |
+
Courtesy of [TheBloke](https://huggingface.co/TheBloke)
|
37 |
+
```
|
38 |
+
### System:
|
39 |
+
{system_message}
|
40 |
+
|
41 |
+
### User:
|
42 |
+
{prompt}
|
43 |
+
|
44 |
+
### Assistant:
|
45 |
+
|
46 |
+
```
|
47 |
+
|
48 |
+
### If you use Oobabooga's Chat tab
|
49 |
+
From my testing, the template "Orca-Mini" or any of the Orca templates produced the best result. Feel free to leave a suggestion if you know better.
|
50 |
+
|
51 |
+
# Original Info
|
52 |
+
# **Sakura-SOLAR-Instruct**
|
53 |
+
<img src='./sakura.png' width=512>
|
54 |
+
|
55 |
+
**(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다**
|
56 |
+
|
57 |
+
## Model Details
|
58 |
+
|
59 |
+
**Model Developers** Kyujin Han (kyujinpy)
|
60 |
+
|
61 |
+
**Method**
|
62 |
+
Using [Mergekit](https://github.com/cg123/mergekit).
|
63 |
+
I shared the information about my model. (training and code)
|
64 |
+
**Please see: [⭐Sakura-SOLAR](https://github.com/KyujinHan/Sakura-SOLAR-DPO).**
|
65 |
+
|
66 |
+
**Blog**
|
67 |
+
- [Sakura-SOLAR 모델 제작 과정 및 후기](https://kyujinpy.tistory.com/122).
|
68 |
+
|
69 |
+
# **Model Benchmark**
|
70 |
+
|
71 |
+
## Open leaderboard
|
72 |
+
- Follow up as [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
73 |
+
|
74 |
+
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
|
75 |
+
| --- | --- | --- | --- | --- | --- | --- | --- |
|
76 |
+
| Sakura-SOLRCA-Instruct-DPO | 74.05 | 71.16 | 88.49 | 66.17 | 72.10 | 82.95 | 63.46 |
|
77 |
+
| Sakura-SOLAR-Instruct-DPO-v2 | 74.14 | 70.90 | 88.41 | 66.48 | 71.86 | 83.43 | 63.76 |
|
78 |
+
| [kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct) | 74.40 | 70.99 | 88.42 | 66.33 | 71.79 | 83.66 | 65.20
|
79 |
+
> Rank1 2023.12.27 PM 11:50
|
80 |
+
|
81 |
+
|
82 |
+
# Implementation Code
|
83 |
+
```python
|
84 |
+
### KO-Platypus
|
85 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
86 |
+
import torch
|
87 |
+
|
88 |
+
repo = "kyujinpy/Sakura-SOLAR-Instruct"
|
89 |
+
OpenOrca = AutoModelForCausalLM.from_pretrained(
|
90 |
+
repo,
|
91 |
+
return_dict=True,
|
92 |
+
torch_dtype=torch.float16,
|
93 |
+
device_map='auto'
|
94 |
+
)
|
95 |
+
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
|
96 |
+
```
|
97 |
+
|
98 |
+
---
|