End of training
Browse files- README.md +151 -0
- config.json +144 -0
- model.safetensors +3 -0
- preprocessor_config.json +23 -0
- runs/Jan20_06-21-09_jupyter-admin01/events.out.tfevents.1737354101.jupyter-admin01.177.0 +3 -0
- runs/Jan20_06-21-09_jupyter-admin01/events.out.tfevents.1737355214.jupyter-admin01.177.1 +3 -0
- runs/Jan20_06-45-05_jupyter-admin01/events.out.tfevents.1737355516.jupyter-admin01.177.2 +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: hogehoge
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: segformer-b0-finetuned-segments-sidewalk-2
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# segformer-b0-finetuned-segments-sidewalk-2
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [hogehoge](https://huggingface.co/hogehoge) on the segments/sidewalk-semantic dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.9393
|
21 |
+
- Mean Iou: 0.0027
|
22 |
+
- Mean Accuracy: 0.0525
|
23 |
+
- Overall Accuracy: 0.0214
|
24 |
+
- Accuracy Unlabeled: nan
|
25 |
+
- Accuracy Flat-road: 0.0284
|
26 |
+
- Accuracy Flat-sidewalk: 0.1051
|
27 |
+
- Accuracy Flat-crosswalk: 0.0
|
28 |
+
- Accuracy Flat-cyclinglane: 0.0131
|
29 |
+
- Accuracy Flat-parkingdriveway: nan
|
30 |
+
- Accuracy Flat-railtrack: 0.0
|
31 |
+
- Accuracy Flat-curb: 0.0
|
32 |
+
- Accuracy Human-person: 0.0
|
33 |
+
- Accuracy Human-rider: 0.0
|
34 |
+
- Accuracy Vehicle-car: 0.3571
|
35 |
+
- Accuracy Vehicle-truck: 0.0
|
36 |
+
- Accuracy Vehicle-bus: nan
|
37 |
+
- Accuracy Vehicle-tramtrain: 0.0
|
38 |
+
- Accuracy Vehicle-motorcycle: 0.0
|
39 |
+
- Accuracy Vehicle-bicycle: 0.0
|
40 |
+
- Accuracy Vehicle-caravan: 0.0
|
41 |
+
- Accuracy Vehicle-cartrailer: 0.0
|
42 |
+
- Accuracy Construction-building: 0.9472
|
43 |
+
- Accuracy Construction-door: 0.0
|
44 |
+
- Accuracy Construction-wall: 0.0000
|
45 |
+
- Accuracy Construction-fenceguardrail: 0.0
|
46 |
+
- Accuracy Construction-bridge: nan
|
47 |
+
- Accuracy Construction-tunnel: 0.0
|
48 |
+
- Accuracy Construction-stairs: 0.0
|
49 |
+
- Accuracy Object-pole: 0.0
|
50 |
+
- Accuracy Object-trafficsign: 0.0
|
51 |
+
- Accuracy Object-trafficlight: 0.0
|
52 |
+
- Accuracy Nature-vegetation: 0.1241
|
53 |
+
- Accuracy Nature-terrain: 0.0000
|
54 |
+
- Accuracy Sky: 0.0
|
55 |
+
- Accuracy Void-ground: 0.0
|
56 |
+
- Accuracy Void-dynamic: 0.0
|
57 |
+
- Accuracy Void-static: 0.0
|
58 |
+
- Accuracy Void-unclear: nan
|
59 |
+
- Iou Unlabeled: nan
|
60 |
+
- Iou Flat-road: 0.0257
|
61 |
+
- Iou Flat-sidewalk: 0.0033
|
62 |
+
- Iou Flat-crosswalk: 0.0
|
63 |
+
- Iou Flat-cyclinglane: 0.0056
|
64 |
+
- Iou Flat-parkingdriveway: 0.0
|
65 |
+
- Iou Flat-railtrack: 0.0
|
66 |
+
- Iou Flat-curb: 0.0
|
67 |
+
- Iou Human-person: 0.0
|
68 |
+
- Iou Human-rider: 0.0
|
69 |
+
- Iou Vehicle-car: 0.0041
|
70 |
+
- Iou Vehicle-truck: 0.0
|
71 |
+
- Iou Vehicle-bus: nan
|
72 |
+
- Iou Vehicle-tramtrain: 0.0
|
73 |
+
- Iou Vehicle-motorcycle: 0.0
|
74 |
+
- Iou Vehicle-bicycle: 0.0
|
75 |
+
- Iou Vehicle-caravan: 0.0
|
76 |
+
- Iou Vehicle-cartrailer: 0.0
|
77 |
+
- Iou Construction-building: 0.0185
|
78 |
+
- Iou Construction-door: 0.0
|
79 |
+
- Iou Construction-wall: 0.0000
|
80 |
+
- Iou Construction-fenceguardrail: 0.0
|
81 |
+
- Iou Construction-bridge: nan
|
82 |
+
- Iou Construction-tunnel: 0.0
|
83 |
+
- Iou Construction-stairs: 0.0
|
84 |
+
- Iou Object-pole: 0.0
|
85 |
+
- Iou Object-trafficsign: 0.0
|
86 |
+
- Iou Object-trafficlight: 0.0
|
87 |
+
- Iou Nature-vegetation: 0.0263
|
88 |
+
- Iou Nature-terrain: 0.0000
|
89 |
+
- Iou Sky: 0.0
|
90 |
+
- Iou Void-ground: 0.0
|
91 |
+
- Iou Void-dynamic: 0.0
|
92 |
+
- Iou Void-static: 0.0
|
93 |
+
- Iou Void-unclear: nan
|
94 |
+
|
95 |
+
## Model description
|
96 |
+
|
97 |
+
More information needed
|
98 |
+
|
99 |
+
## Intended uses & limitations
|
100 |
+
|
101 |
+
More information needed
|
102 |
+
|
103 |
+
## Training and evaluation data
|
104 |
+
|
105 |
+
More information needed
|
106 |
+
|
107 |
+
## Training procedure
|
108 |
+
|
109 |
+
### Training hyperparameters
|
110 |
+
|
111 |
+
The following hyperparameters were used during training:
|
112 |
+
- learning_rate: 6e-05
|
113 |
+
- train_batch_size: 2
|
114 |
+
- eval_batch_size: 2
|
115 |
+
- seed: 42
|
116 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
117 |
+
- lr_scheduler_type: linear
|
118 |
+
- num_epochs: 1
|
119 |
+
|
120 |
+
### Training results
|
121 |
+
|
122 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|
123 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
|
124 |
+
| 1.7078 | 0.05 | 20 | 1.4727 | 0.0050 | 0.0648 | 0.0413 | nan | 0.0453 | 0.1637 | 0.0 | 0.0094 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.4761 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8487 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4009 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0407 | 0.0050 | 0.0 | 0.0046 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0043 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0198 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0808 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
125 |
+
| 1.5621 | 0.1 | 40 | 1.2747 | 0.0039 | 0.0588 | 0.0334 | nan | 0.0395 | 0.1797 | 0.0 | 0.0037 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3333 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9304 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2783 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0359 | 0.0054 | 0.0 | 0.0018 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0037 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0190 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0562 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
126 |
+
| 1.3203 | 0.15 | 60 | 1.2383 | 0.0046 | 0.0604 | 0.0393 | nan | 0.0453 | 0.1395 | 0.0 | 0.0080 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3332 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9205 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3648 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0405 | 0.0044 | 0.0 | 0.0037 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0036 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0184 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0731 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
127 |
+
| 1.2475 | 0.2 | 80 | 1.2265 | 0.0026 | 0.0549 | 0.0195 | nan | 0.0259 | 0.2398 | 0.0 | 0.0245 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3967 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9003 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0595 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0237 | 0.0071 | 0.0 | 0.0109 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0043 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0207 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0134 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
128 |
+
| 1.5941 | 0.25 | 100 | 1.2210 | 0.0065 | 0.0632 | 0.0573 | nan | 0.0776 | 0.0279 | 0.0 | 0.0228 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3200 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9444 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5040 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0680 | 0.0009 | 0.0 | 0.0098 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0038 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0186 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1008 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
129 |
+
| 0.9769 | 0.3 | 120 | 1.1445 | 0.0019 | 0.0531 | 0.0157 | nan | 0.0198 | 0.2436 | 0.0 | 0.0066 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3249 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9607 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0379 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0183 | 0.0071 | 0.0 | 0.0035 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0041 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0176 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0087 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
130 |
+
| 1.2438 | 0.35 | 140 | 1.1050 | 0.0035 | 0.0583 | 0.0309 | nan | 0.0385 | 0.1843 | 0.0 | 0.0019 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3802 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9115 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2319 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0347 | 0.0057 | 0.0 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0044 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0194 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0441 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
131 |
+
| 2.0597 | 0.4 | 160 | 1.0509 | 0.0033 | 0.0572 | 0.0251 | nan | 0.0259 | 0.1654 | 0.0 | 0.0167 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3968 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9070 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2050 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0236 | 0.0049 | 0.0 | 0.0075 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0043 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0197 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0421 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
132 |
+
| 1.2601 | 0.45 | 180 | 1.0366 | 0.0028 | 0.0544 | 0.0215 | nan | 0.0196 | 0.1423 | 0.0 | 0.0116 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.2936 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9778 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1861 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0180 | 0.0043 | 0.0 | 0.0052 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0039 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0189 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0377 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
133 |
+
| 1.4819 | 0.5 | 200 | 1.0306 | 0.0035 | 0.0544 | 0.0286 | nan | 0.0339 | 0.1112 | 0.0 | 0.0174 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3395 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8977 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2318 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0306 | 0.0035 | 0.0 | 0.0074 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0042 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0187 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0453 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
134 |
+
| 1.2691 | 0.55 | 220 | 1.0464 | 0.0034 | 0.0517 | 0.0315 | nan | 0.0573 | 0.0692 | 0.0 | 0.0141 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3368 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9610 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1127 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0505 | 0.0023 | 0.0 | 0.0061 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0042 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0173 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0241 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
135 |
+
| 1.4964 | 0.6 | 240 | 0.9766 | 0.0022 | 0.0511 | 0.0149 | nan | 0.0170 | 0.1352 | 0.0 | 0.0352 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3674 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9244 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0531 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0157 | 0.0041 | 0.0 | 0.0141 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0043 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0194 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0114 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
136 |
+
| 1.0495 | 0.65 | 260 | 0.9955 | 0.0029 | 0.0517 | 0.0220 | nan | 0.0205 | 0.1308 | 0.0 | 0.0165 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3268 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8596 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1960 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0188 | 0.0040 | 0.0 | 0.0070 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0039 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0186 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0385 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
137 |
+
| 1.01 | 0.7 | 280 | 0.9897 | 0.0027 | 0.0495 | 0.0237 | nan | 0.0425 | 0.0761 | 0.0 | 0.0124 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3474 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9409 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0663 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0378 | 0.0024 | 0.0 | 0.0055 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0040 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0189 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0143 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
138 |
+
| 1.2455 | 0.75 | 300 | 0.9772 | 0.0027 | 0.0493 | 0.0229 | nan | 0.0365 | 0.0776 | 0.0 | 0.0194 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.2942 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9603 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0919 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0328 | 0.0025 | 0.0 | 0.0083 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0038 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0183 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0192 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
139 |
+
| 1.0037 | 0.8 | 320 | 0.9762 | 0.0033 | 0.0537 | 0.0256 | nan | 0.0277 | 0.0919 | 0.0 | 0.0161 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.2931 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9624 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2196 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0253 | 0.0029 | 0.0 | 0.0068 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0038 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0182 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0440 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
140 |
+
| 1.4191 | 0.85 | 340 | 0.9478 | 0.0028 | 0.0528 | 0.0219 | nan | 0.0246 | 0.1163 | 0.0 | 0.0140 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3095 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9573 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1625 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0223 | 0.0036 | 0.0 | 0.0060 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0039 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0185 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0338 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
141 |
+
| 0.8844 | 0.9 | 360 | 0.9406 | 0.0029 | 0.0541 | 0.0223 | nan | 0.0246 | 0.1224 | 0.0 | 0.0151 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3412 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9532 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1673 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0223 | 0.0038 | 0.0 | 0.0064 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0041 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0184 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0352 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
142 |
+
| 1.053 | 0.95 | 380 | 0.9542 | 0.0030 | 0.0527 | 0.0246 | nan | 0.0349 | 0.0897 | 0.0 | 0.0152 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3554 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9432 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1426 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0312 | 0.0029 | 0.0 | 0.0065 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0042 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0189 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0295 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
143 |
+
| 2.2768 | 1.0 | 400 | 0.9393 | 0.0027 | 0.0525 | 0.0214 | nan | 0.0284 | 0.1051 | 0.0 | 0.0131 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.3571 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9472 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1241 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0257 | 0.0033 | 0.0 | 0.0056 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0041 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0185 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0263 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0 | nan |
|
144 |
+
|
145 |
+
|
146 |
+
### Framework versions
|
147 |
+
|
148 |
+
- Transformers 4.48.0
|
149 |
+
- Pytorch 2.1.1+cu118
|
150 |
+
- Datasets 3.2.0
|
151 |
+
- Tokenizers 0.21.0
|
config.json
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b0",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 256,
|
9 |
+
"depths": [
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2,
|
13 |
+
2
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
32,
|
26 |
+
64,
|
27 |
+
160,
|
28 |
+
256
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "unlabeled",
|
32 |
+
"1": "flat-road",
|
33 |
+
"2": "flat-sidewalk",
|
34 |
+
"3": "flat-crosswalk",
|
35 |
+
"4": "flat-cyclinglane",
|
36 |
+
"5": "flat-parkingdriveway",
|
37 |
+
"6": "flat-railtrack",
|
38 |
+
"7": "flat-curb",
|
39 |
+
"8": "human-person",
|
40 |
+
"9": "human-rider",
|
41 |
+
"10": "vehicle-car",
|
42 |
+
"11": "vehicle-truck",
|
43 |
+
"12": "vehicle-bus",
|
44 |
+
"13": "vehicle-tramtrain",
|
45 |
+
"14": "vehicle-motorcycle",
|
46 |
+
"15": "vehicle-bicycle",
|
47 |
+
"16": "vehicle-caravan",
|
48 |
+
"17": "vehicle-cartrailer",
|
49 |
+
"18": "construction-building",
|
50 |
+
"19": "construction-door",
|
51 |
+
"20": "construction-wall",
|
52 |
+
"21": "construction-fenceguardrail",
|
53 |
+
"22": "construction-bridge",
|
54 |
+
"23": "construction-tunnel",
|
55 |
+
"24": "construction-stairs",
|
56 |
+
"25": "object-pole",
|
57 |
+
"26": "object-trafficsign",
|
58 |
+
"27": "object-trafficlight",
|
59 |
+
"28": "nature-vegetation",
|
60 |
+
"29": "nature-terrain",
|
61 |
+
"30": "sky",
|
62 |
+
"31": "void-ground",
|
63 |
+
"32": "void-dynamic",
|
64 |
+
"33": "void-static",
|
65 |
+
"34": "void-unclear"
|
66 |
+
},
|
67 |
+
"image_size": 224,
|
68 |
+
"initializer_range": 0.02,
|
69 |
+
"label2id": {
|
70 |
+
"construction-bridge": 22,
|
71 |
+
"construction-building": 18,
|
72 |
+
"construction-door": 19,
|
73 |
+
"construction-fenceguardrail": 21,
|
74 |
+
"construction-stairs": 24,
|
75 |
+
"construction-tunnel": 23,
|
76 |
+
"construction-wall": 20,
|
77 |
+
"flat-crosswalk": 3,
|
78 |
+
"flat-curb": 7,
|
79 |
+
"flat-cyclinglane": 4,
|
80 |
+
"flat-parkingdriveway": 5,
|
81 |
+
"flat-railtrack": 6,
|
82 |
+
"flat-road": 1,
|
83 |
+
"flat-sidewalk": 2,
|
84 |
+
"human-person": 8,
|
85 |
+
"human-rider": 9,
|
86 |
+
"nature-terrain": 29,
|
87 |
+
"nature-vegetation": 28,
|
88 |
+
"object-pole": 25,
|
89 |
+
"object-trafficlight": 27,
|
90 |
+
"object-trafficsign": 26,
|
91 |
+
"sky": 30,
|
92 |
+
"unlabeled": 0,
|
93 |
+
"vehicle-bicycle": 15,
|
94 |
+
"vehicle-bus": 12,
|
95 |
+
"vehicle-car": 10,
|
96 |
+
"vehicle-caravan": 16,
|
97 |
+
"vehicle-cartrailer": 17,
|
98 |
+
"vehicle-motorcycle": 14,
|
99 |
+
"vehicle-tramtrain": 13,
|
100 |
+
"vehicle-truck": 11,
|
101 |
+
"void-dynamic": 32,
|
102 |
+
"void-ground": 31,
|
103 |
+
"void-static": 33,
|
104 |
+
"void-unclear": 34
|
105 |
+
},
|
106 |
+
"layer_norm_eps": 1e-06,
|
107 |
+
"mlp_ratios": [
|
108 |
+
4,
|
109 |
+
4,
|
110 |
+
4,
|
111 |
+
4
|
112 |
+
],
|
113 |
+
"model_type": "segformer",
|
114 |
+
"num_attention_heads": [
|
115 |
+
1,
|
116 |
+
2,
|
117 |
+
5,
|
118 |
+
8
|
119 |
+
],
|
120 |
+
"num_channels": 3,
|
121 |
+
"num_encoder_blocks": 4,
|
122 |
+
"patch_sizes": [
|
123 |
+
7,
|
124 |
+
3,
|
125 |
+
3,
|
126 |
+
3
|
127 |
+
],
|
128 |
+
"reshape_last_stage": true,
|
129 |
+
"semantic_loss_ignore_index": 255,
|
130 |
+
"sr_ratios": [
|
131 |
+
8,
|
132 |
+
4,
|
133 |
+
2,
|
134 |
+
1
|
135 |
+
],
|
136 |
+
"strides": [
|
137 |
+
4,
|
138 |
+
2,
|
139 |
+
2,
|
140 |
+
2
|
141 |
+
],
|
142 |
+
"torch_dtype": "float32",
|
143 |
+
"transformers_version": "4.48.0"
|
144 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:176f0c6707f35a57b40bb891e5931cd37af2f24a64e7e21494eef480754c35a9
|
3 |
+
size 14918708
|
preprocessor_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_reduce_labels": false,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.485,
|
8 |
+
0.456,
|
9 |
+
0.406
|
10 |
+
],
|
11 |
+
"image_processor_type": "SegformerFeatureExtractor",
|
12 |
+
"image_std": [
|
13 |
+
0.229,
|
14 |
+
0.224,
|
15 |
+
0.225
|
16 |
+
],
|
17 |
+
"resample": 2,
|
18 |
+
"rescale_factor": 0.00392156862745098,
|
19 |
+
"size": {
|
20 |
+
"height": 512,
|
21 |
+
"width": 512
|
22 |
+
}
|
23 |
+
}
|
runs/Jan20_06-21-09_jupyter-admin01/events.out.tfevents.1737354101.jupyter-admin01.177.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3d3169cbc27f97293b89ebbdc7a4819d724c6c84ac5cb56140d26d6a44eb5d8
|
3 |
+
size 11604
|
runs/Jan20_06-21-09_jupyter-admin01/events.out.tfevents.1737355214.jupyter-admin01.177.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f33d73dffc3177c9a9fb616200c8adc7a224c3f56d3932ea00cde943150f7ca
|
3 |
+
size 47848
|
runs/Jan20_06-45-05_jupyter-admin01/events.out.tfevents.1737355516.jupyter-admin01.177.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:657875b8af6f3f462f795bdbb1471e27dfbd359dcad04588d10f84f708f4b362
|
3 |
+
size 191182
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:181cebe210cd87415ab77ae759f029cfa5a0b64865fab706581f051a5138231c
|
3 |
+
size 5432
|