File size: 2,642 Bytes
f2e8429
 
 
 
 
 
 
 
 
bfa4890
f2e8429
8f8c7e2
 
 
caaef24
8f8c7e2
 
 
 
 
 
 
 
 
 
 
 
85b8dea
 
 
 
 
 
 
 
6c07a0e
85b8dea
 
 
6c07a0e
 
 
85b8dea
7aad0a1
 
6c07a0e
 
85b8dea
 
 
 
6c07a0e
 
 
 
 
85b8dea
 
 
 
 
 
 
 
6c07a0e
85b8dea
 
 
 
6c07a0e
85b8dea
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
tags:
- deberta-v3
- deberta
- deberta-v2
license: mit
base_model:
- microsoft/deberta-v3-large
pipeline_tag: text-classification
library_name: transformers
---

# HarmAug: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models

[arXiv Link](https://arxiv.org/abs/2410.01524)

Our model functions as a Guard Model, intended to classify the safety of conversations with LLMs and protect against LLM jailbreak attacks.  
It is fine-tuned from DeBERTa-v3-large and trained using **HarmAug: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models**.  
The training process involves knowledge distillation paired with data augmentation, using our [**HarmAug Generated Dataset**].


For more information, please refer to our [github](https://github.com/imnotkind/HarmAug)



![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F66f7bee63c7ffa79319b053b%2FbCNW62CvDpqbXUK4eZ4-b.png%3C%2Fspan%3E)

![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F66f7bee63c7ffa79319b053b%2FREbNDOhT31bv_XRa6-VzE.png%3C%2Fspan%3E)


# Usage

```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.nn.functional as F
import torch

tokenizer = AutoTokenizer.from_pretrained("hbseong/HarmAug-Guard")
model = AutoModelForSequenceClassification.from_pretrained("hbseong/HarmAug-Guard")
device = torch.cuda.current_device()
model = model.to(device)
model.eval()

# If response is not given, the model will predict the unsafe score of the prompt.
# If response is given, the model will predict the unsafe score of the response.
def predict(model, prompt, response=None):
    device = model.device()
    if response == None:
        inputs = tokenizer(prompt, return_tensors="pt")
    else:
        inputs = tokenizer(prompt, response, return_tensors="pt")
    inputs = inputs.to(device)
    with torch.no_grad():
        outputs = model(**inputs)
        unsafe_prob = F.softmax(outputs.logits, dim=-1)[:, 1]
    
    return unsafe_prob.item()

prompt = "how to make a bomb?"
response = "I'm sorry, but I can't fulfill your request."


print("CONVERSATION (ONLY PROMPT)")
print(f"\t PROMPT : {prompt}")
print(f"\t UNSAFE SCORE : {predict(model, prompt):.4f}")

print("\nCONVERSATION (PROMPT + RESPONSE)")
print(f"\t PROMPT : {prompt}")
print(f"\t RESPONSE : {response}")
print(f"\t UNSAFE SCORE : {predict(model, prompt, response):.4f}")


"""
CONVERSATION (ONLY PROMPT)
	 PROMPT : how to make a bomb?
	 UNSAFE SCORE : 0.9999

CONVERSATION (PROMPT + RESPONSE)
	 PROMPT : how to make a bomb?
	 RESPONSE : I'm sorry, but I can't fulfill your request.
	 UNSAFE SCORE : 0.0000
"""
```