hassaanik commited on
Commit
8f65667
·
verified ·
1 Parent(s): 2187c4b

Upload 25 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ static/images/back1.jpg filter=lfs diff=lfs merge=lfs -text
37
+ static/images/back3.jpg filter=lfs diff=lfs merge=lfs -text
38
+ static/images/back5.jpg filter=lfs diff=lfs merge=lfs -text
39
+ static/images/back6.jpg filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify, render_template
2
+ import torch
3
+ from torchvision import transforms
4
+ from PIL import Image
5
+ import os
6
+ import torch.nn as nn
7
+ import timm
8
+ from torchvision.models import swin_t, Swin_T_Weights, vit_b_16, ViT_B_16_Weights
9
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
10
+
11
+ app = Flask(__name__)
12
+
13
+ # Set up directories for uploads and models
14
+ UPLOAD_FOLDER = os.path.join('static', 'uploads')
15
+ app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
16
+
17
+ # Device configuration
18
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
19
+
20
+ # Load the LLM model and tokenizer
21
+ model = GPT2LMHeadModel.from_pretrained('models\\LLM').to(device)
22
+ tokenizer = GPT2Tokenizer.from_pretrained('models\\LLM')
23
+ separator_token = tokenizer.eos_token # Separator token for the model
24
+
25
+ # Define and load the pre-trained Swin models
26
+
27
+ # Gastrointestinal Model (4 classes: Diverticulosis, Neoplasm, Peritonitis, Ureters)
28
+ gastrointestinal_classes = ['Diverticulosis', 'Neoplasm', 'Peritonitis', 'Ureters']
29
+ gastrointestinal_model = timm.create_model('swin_base_patch4_window7_224', pretrained=True)
30
+ gastrointestinal_model.head = nn.Linear(gastrointestinal_model.head.in_features, len(gastrointestinal_classes))
31
+ gastrointestinal_model = gastrointestinal_model.to(device)
32
+ gastrointestinal_model.load_state_dict(torch.load('models\\gastrointestinal_model_swin.pth', map_location=device, weights_only=True), strict=False)
33
+ gastrointestinal_model.eval()
34
+
35
+ # Chest CT Model (4 classes: Adenocarcinoma, Large cell carcinoma, Normal, Squamous cell carcinoma)
36
+ chest_ct_classes = ['Adenocarcinoma', 'Large Cell Carcinoma', 'Normal', 'Squamous Cell Carcinoma']
37
+ chest_ct_model = swin_t(weights=Swin_T_Weights.IMAGENET1K_V1)
38
+ chest_ct_model.head = nn.Linear(chest_ct_model.head.in_features, len(chest_ct_classes))
39
+ chest_ct_model = chest_ct_model.to(device)
40
+ chest_ct_model.load_state_dict(torch.load('models\\best_model.pth', map_location=device, weights_only=True), strict=False)
41
+ chest_ct_model.eval()
42
+
43
+ # Chest X-ray Model (2 classes: Normal, Pneumonia)
44
+ chest_xray_classes = ['Normal', 'Pneumonia']
45
+ chest_xray_model = vit_b_16(weights=ViT_B_16_Weights.IMAGENET1K_V1)
46
+ chest_xray_model.heads.head = nn.Linear(chest_xray_model.heads.head.in_features, len(chest_xray_classes))
47
+ chest_xray_model = chest_xray_model.to(device)
48
+ chest_xray_model.load_state_dict(torch.load('models\\best_model_vit_chest_xray.pth', map_location=device, weights_only=True), strict=False)
49
+ chest_xray_model.eval()
50
+
51
+ # Image transformation (same for all models)
52
+ transform = transforms.Compose([
53
+ transforms.Resize((224, 224)),
54
+ transforms.ToTensor(),
55
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
56
+ ])
57
+
58
+
59
+ # Helper function to load and transform images
60
+ def process_image(image_path):
61
+ image = Image.open(image_path).convert('RGB')
62
+ return transform(image).unsqueeze(0).to(device)
63
+
64
+ # LLM helper function to generate answers
65
+ def generate_answer(question, max_length=1024):
66
+ model.eval() # Set the model to evaluation mode
67
+ input_text = question + separator_token
68
+ input_ids = tokenizer.encode(input_text, return_tensors='pt').to(device)
69
+
70
+ output = model.generate(input_ids, max_length=max_length, pad_token_id=tokenizer.eos_token_id)
71
+ answer = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
72
+ return answer
73
+
74
+ # Prediction routes for each model
75
+ @app.route('/predict_gastrointestinal', methods=['POST'])
76
+ def predict_gastrointestinal():
77
+ if 'file' not in request.files:
78
+ return jsonify({"error": "No file uploaded"}), 400
79
+
80
+ file = request.files['file']
81
+ file_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
82
+ file.save(file_path)
83
+
84
+ # Preprocess the image
85
+ image_tensor = process_image(file_path)
86
+
87
+ # Make prediction using the gastrointestinal model
88
+ with torch.no_grad():
89
+ output = gastrointestinal_model(image_tensor)
90
+
91
+ # Ensure the output tensor has the right shape and handle it
92
+
93
+ # If the output has extra dimensions, flatten it
94
+ if len(output.shape) > 2:
95
+ output = output.view(output.size(0), -1)
96
+
97
+ # Check if output is for a batch or single sample
98
+ if output.size(0) != 1:
99
+ return jsonify({"error": "Unexpected output size"}), 500
100
+
101
+ # Get the predicted class (ensure it's scalar)
102
+ _, predicted = torch.max(output, 1)
103
+ predicted_class = gastrointestinal_classes[predicted.item()]
104
+
105
+ return jsonify({'prediction': predicted_class})
106
+
107
+
108
+ @app.route('/predict_chest_ct', methods=['POST'])
109
+ def predict_chest_ct():
110
+ if 'file' not in request.files:
111
+ return jsonify({"error": "No file uploaded"}), 400
112
+
113
+ file = request.files['file']
114
+ file_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
115
+ file.save(file_path)
116
+
117
+ # Preprocess the image
118
+ image_tensor = process_image(file_path)
119
+
120
+ # Make prediction using the chest CT model
121
+ with torch.no_grad():
122
+ output = chest_ct_model(image_tensor)
123
+ _, predicted = torch.max(output, 1)
124
+ predicted_class = chest_ct_classes[predicted.item()]
125
+
126
+ return jsonify({'prediction': predicted_class})
127
+
128
+
129
+ @app.route('/predict_chest_xray', methods=['POST'])
130
+ def predict_chest_xray():
131
+ if 'file' not in request.files:
132
+ return jsonify({"error": "No file uploaded"}), 400
133
+
134
+ file = request.files['file']
135
+ file_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
136
+ file.save(file_path)
137
+
138
+ # Preprocess the image
139
+ image_tensor = process_image(file_path)
140
+
141
+ # Make prediction using the chest X-ray model
142
+ with torch.no_grad():
143
+ output = chest_xray_model(image_tensor)
144
+ _, predicted = torch.max(output, 1)
145
+ predicted_class = chest_xray_classes[predicted.item()]
146
+
147
+ return jsonify({'prediction': predicted_class})
148
+
149
+
150
+ # New LLM route for asking questions
151
+ @app.route('/ask_llm', methods=['POST'])
152
+ def ask_llm():
153
+ user_question = request.json.get('question', None)
154
+
155
+ if not user_question:
156
+ return jsonify({"error": "No question provided"}), 400
157
+
158
+ try:
159
+ # Generate answer using the fine-tuned GPT-2 model
160
+ answer = generate_answer(user_question)
161
+ except Exception as e:
162
+ return jsonify({"error": f"An error occurred: {str(e)}"}), 500
163
+
164
+ return jsonify({'answer': answer})
165
+
166
+
167
+ # Main route for the homepage
168
+ @app.route('/')
169
+ def index():
170
+ return render_template('index.html')
171
+
172
+ if __name__ == "__main__":
173
+ app.run(debug=True)
models/LLM/config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilgpt2",
3
+ "_num_labels": 1,
4
+ "activation_function": "gelu_new",
5
+ "architectures": [
6
+ "GPT2LMHeadModel"
7
+ ],
8
+ "attn_pdrop": 0.1,
9
+ "bos_token_id": 50256,
10
+ "embd_pdrop": 0.1,
11
+ "eos_token_id": 50256,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_epsilon": 1e-05,
20
+ "model_type": "gpt2",
21
+ "n_ctx": 1024,
22
+ "n_embd": 768,
23
+ "n_head": 12,
24
+ "n_inner": null,
25
+ "n_layer": 6,
26
+ "n_positions": 1024,
27
+ "reorder_and_upcast_attn": false,
28
+ "resid_pdrop": 0.1,
29
+ "scale_attn_by_inverse_layer_idx": false,
30
+ "scale_attn_weights": true,
31
+ "summary_activation": null,
32
+ "summary_first_dropout": 0.1,
33
+ "summary_proj_to_labels": true,
34
+ "summary_type": "cls_index",
35
+ "summary_use_proj": true,
36
+ "task_specific_params": {
37
+ "text-generation": {
38
+ "do_sample": true,
39
+ "max_length": 50
40
+ }
41
+ },
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.44.2",
44
+ "use_cache": true,
45
+ "vocab_size": 50257
46
+ }
models/LLM/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 50256,
4
+ "eos_token_id": 50256,
5
+ "transformers_version": "4.44.2"
6
+ }
models/LLM/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
models/LLM/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be1dd397ce1983f5a553f6c5f9aa65f22260e75a8ba77ebf91ee75c6dcac2118
3
+ size 327657928
models/LLM/special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "pad_token": "<|endoftext|>",
5
+ "unk_token": "<|endoftext|>"
6
+ }
models/LLM/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
models/LLM/tokenizer_config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ }
12
+ },
13
+ "bos_token": "<|endoftext|>",
14
+ "clean_up_tokenization_spaces": true,
15
+ "eos_token": "<|endoftext|>",
16
+ "model_max_length": 1024,
17
+ "pad_token": "<|endoftext|>",
18
+ "tokenizer_class": "GPT2Tokenizer",
19
+ "unk_token": "<|endoftext|>"
20
+ }
models/LLM/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
models/chest_ct_model_swin.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:789bda3e8a7908341b793cff4d88dc01b823953a076eab42ba9c8fc26018d9cc
3
+ size 110386359
models/chest_xray_vit.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc43ca56aeb7922c689380f34c020f1bb88859511e159c4b47a5a7155b4a48be
3
+ size 343263994
models/gastrointestinal_model_swin.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc0180d6a9c4bc375fa20cf52adbecffeb274c8f285768fe96e31985532b47c8
3
+ size 347124772
static/images/back1.jpg ADDED

Git LFS Details

  • SHA256: b5292868bfad48338e75a4c11764cdbfbc315ef703dbbbe3297261758266f2cf
  • Pointer size: 132 Bytes
  • Size of remote file: 1.21 MB
static/images/back2.jpg ADDED
static/images/back3.jpg ADDED

Git LFS Details

  • SHA256: 5329fbc9ec4d09fe9ecc9771d6e5b8eccf4bde1b5a1b015bd0abd74e9d80458b
  • Pointer size: 132 Bytes
  • Size of remote file: 2.25 MB
static/images/back4.jpeg ADDED
static/images/back5.jpg ADDED

Git LFS Details

  • SHA256: c82ae0cb651e7bb650fb82453d39fcb3d2c77de6b0f6361c963afa056768eea7
  • Pointer size: 132 Bytes
  • Size of remote file: 2.2 MB
static/images/back6.jpg ADDED

Git LFS Details

  • SHA256: 14a639080e43782c742bcdd55d70bc9259dcb957e632f62141063f8998921d26
  • Pointer size: 132 Bytes
  • Size of remote file: 1.47 MB
static/images/back7.jpg ADDED
static/images/background.jpeg ADDED
static/images/chest_ct.jpeg ADDED
static/images/chest_xray.jpeg ADDED
static/images/gastro.jpeg ADDED
static/styles.css ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /* General Styles */
2
+ body {
3
+ margin: 0;
4
+ font-family: Arial, sans-serif;
5
+ background-color: #f0f8ff;
6
+ background-image: url('/static/images/back3.jpg');
7
+ background-size: cover;
8
+ background-position: center;
9
+ animation: backgroundChange 15s infinite;
10
+ }
11
+
12
+ button, .research-link, .case-report-link, input[type="file"] {
13
+ background-color: #4682b4;
14
+ color: white;
15
+ padding: 10px 20px;
16
+ border: none;
17
+ border-radius: 5px;
18
+ cursor: pointer;
19
+ font-size: 16px;
20
+ transition: background-color 0.3s ease;
21
+ }
22
+
23
+ button:hover, .research-link:hover, .case-report-link:hover, input[type="file"]:hover {
24
+ background-color: #03355e;
25
+ }
26
+
27
+ .container {
28
+ text-align: center;
29
+ padding: 50px;
30
+ }
31
+
32
+ h1 {
33
+ font-size: 2.5em;
34
+ color: #00000022;
35
+ margin-bottom: 20px;
36
+ }
37
+
38
+ /* Tab Styles */
39
+ .tabs {
40
+ display: flex;
41
+ justify-content: center;
42
+ margin-bottom: 20px;
43
+ }
44
+
45
+ .tab-button {
46
+ background-color: #4682b4;
47
+ color: rgb(0, 0, 0);
48
+ border: none;
49
+ padding: 10px 20px;
50
+ margin: 0 5px;
51
+ cursor: pointer;
52
+ font-size: 1.1em;
53
+ transition: background-color 0.3s ease;
54
+ }
55
+
56
+ .tab-button:hover {
57
+ background-color: #03355e;
58
+ }
59
+
60
+ .tab-button.active {
61
+ background-color: #ffffff;
62
+ }
63
+
64
+ .tab-content {
65
+ display: none;
66
+ }
67
+
68
+ .tab-content.active {
69
+ display: block;
70
+ }
71
+
72
+ form {
73
+ margin-bottom: 20px;
74
+ }
75
+
76
+ label {
77
+ font-size: 1.2em;
78
+ }
79
+
80
+ input[type="file"], input[type="text"] {
81
+ margin: 10px 0;
82
+ padding: 10px;
83
+ width: 100%;
84
+ max-width: 500px;
85
+ border: 1px solid #ccc;
86
+ border-radius: 5px;
87
+ }
88
+
89
+ button[type="submit"], button[type="button"] {
90
+ background-color: #5a9bd4;
91
+ color: white;
92
+ padding: 10px 20px;
93
+ border: none;
94
+ font-size: 1.1em;
95
+ cursor: pointer;
96
+ transition: background-color 0.3s ease;
97
+ }
98
+
99
+ button:hover {
100
+ background-color: #03355e;
101
+ }
102
+
103
+ /* Prediction Result */
104
+ .prediction-result {
105
+ margin-top: 20px;
106
+ font-size: 1.5em;
107
+ color: #000000;
108
+ opacity: 1;
109
+ }
110
+
111
+ /* Dropdown Links Styling */
112
+ .resources ul {
113
+ list-style-type: none;
114
+ padding: 0;
115
+ margin: 0;
116
+ }
117
+
118
+ .resources ul li {
119
+ margin: 5px 0;
120
+ }
121
+
122
+ .resources ul li a {
123
+ background-color: #f9a825; /* Bright yellow background */
124
+ color: white; /* White text */
125
+ padding: 10px;
126
+ border-radius: 5px;
127
+ text-decoration: none;
128
+ display: block;
129
+ transition: background-color 0.3s ease;
130
+ }
131
+
132
+ .resources ul li a:hover {
133
+ background-color: #f57f17; /* Darker yellow on hover */
134
+ }
135
+
136
+ /* Adding space between prediction result and research buttons */
137
+ .prediction-result {
138
+ margin-bottom: 20px; /* Adding space below the prediction result */
139
+ }
140
+
141
+
142
+ /* LLM Prompt Bar */
143
+ .llm-prompt-bar {
144
+ position: fixed;
145
+ bottom: 0;
146
+ width: 100%;
147
+ background-color: #333;
148
+ padding: 10px;
149
+ text-align: center;
150
+ }
151
+
152
+ .llm-prompt-bar input[type="text"] {
153
+ width: 70%;
154
+ padding: 10px;
155
+ font-size: 1.1em;
156
+ border: none;
157
+ border-radius: 5px;
158
+ }
159
+
160
+ .llm-prompt-bar button {
161
+ background-color: #5a9bd4;
162
+ color: white;
163
+ padding: 10px 20px;
164
+ border: none;
165
+ cursor: pointer;
166
+ font-size: 1.1em;
167
+ }
168
+
169
+ .llm-prompt-bar button:hover {
170
+ background-color: #03355e;
171
+ }
172
+
173
+ /* Background Change Animation */
174
+ @keyframes backgroundChange {
175
+ 0% {
176
+ background-image: url('/static/images/back5.jpg');
177
+ }
178
+ 50% {
179
+ background-image: url('/static/images/back6.jpg');
180
+ }
181
+ 100% {
182
+ background-image: url('/static/images/back7.jpg');
183
+ }
184
+ }
templates/index.html ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
6
+ <title>AI Health Assistant</title>
7
+ <link rel="stylesheet" href="{{ url_for('static', filename='styles.css') }}">
8
+ <style>
9
+ /* Additional styles for dropdown functionality */
10
+ .dropdown {
11
+ position: relative;
12
+ display: inline-block;
13
+ }
14
+
15
+ .dropdown-content {
16
+ display: none;
17
+ position: absolute;
18
+ background-color: #10477d;
19
+ box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);
20
+ z-index: 1;
21
+ }
22
+
23
+ .dropdown-content a {
24
+ color: black;
25
+ padding: 12px 16px;
26
+ text-decoration: none;
27
+ display: block;
28
+ }
29
+
30
+ .dropdown-content a:hover {
31
+ background-color: #f1f1f153;
32
+ }
33
+
34
+ .dropdown:hover .dropdown-content {
35
+ display: block;
36
+ }
37
+
38
+ .dropdown:hover .dropbtn {
39
+ background-color: #072d4d;
40
+ }
41
+ </style>
42
+ </head>
43
+ <body>
44
+ <div class="container">
45
+ <h1>AI Health Assistant</h1>
46
+
47
+ <!-- Tab Buttons -->
48
+ <div class="tabs">
49
+ <button class="tab-button active" data-target="gastrointestinal">Gastrointestinal Disease Prediction</button>
50
+ <button class="tab-button" data-target="chest_ct">Chest CT Disease Prediction</button>
51
+ <button class="tab-button" data-target="chest_xray">Chest X-ray Disease Prediction</button>
52
+ <button class="tab-button" data-target="llm">Chat</button>
53
+ </div>
54
+
55
+ <!-- Gastrointestinal Model Form -->
56
+ <div id="gastrointestinal" class="tab-content active">
57
+ <h2>Upload Image for Gastrointestinal Disease Prediction</h2>
58
+ <form id="gastrointestinal-form" enctype="multipart/form-data">
59
+ <label for="file">Select Image:</label>
60
+ <input type="file" name="file" id="gastrointestinal-file" required>
61
+ <button type="button" onclick="predictDisease('gastrointestinal')">Predict</button>
62
+ </form>
63
+ <div class="prediction-result" id="gastrointestinal-result"></div>
64
+
65
+ <!-- Dropdown for Research Links -->
66
+ <div class="dropdown">
67
+ <button class="dropbtn">Research Papers</button>
68
+ <div class="dropdown-content" id="gastrointestinal-research-links"></div>
69
+ </div>
70
+ <!-- Dropdown for Case Reports -->
71
+ <div class="dropdown">
72
+ <button class="dropbtn">Case Reports</button>
73
+ <div class="dropdown-content" id="gastrointestinal-case-report-links"></div>
74
+ </div>
75
+ </div>
76
+
77
+ <!-- Chest CT Model Form -->
78
+ <div id="chest_ct" class="tab-content">
79
+ <h2>Upload Image for Chest CT Disease Prediction</h2>
80
+ <form id="chest_ct-form" enctype="multipart/form-data">
81
+ <label for="file">Select Image:</label>
82
+ <input type="file" name="file" id="ct-file" required>
83
+ <button type="button" onclick="predictDisease('chest_ct')">Predict</button>
84
+ </form>
85
+ <div class="prediction-result" id="chest_ct-result"></div>
86
+
87
+ <!-- Dropdown for Research Links -->
88
+ <div class="dropdown">
89
+ <button class="dropbtn">Research Papers</button>
90
+ <div class="dropdown-content" id="chest_ct-research-links"></div>
91
+ </div>
92
+ <!-- Dropdown for Case Reports -->
93
+ <div class="dropdown">
94
+ <button class="dropbtn">Case Reports</button>
95
+ <div class="dropdown-content" id="chest_ct-case-report-links"></div>
96
+ </div>
97
+ </div>
98
+
99
+ <!-- Chest X-ray Model Form -->
100
+ <div id="chest_xray" class="tab-content">
101
+ <h2>Upload Image for Chest X-ray Disease Prediction</h2>
102
+ <form id="chest_xray-form" enctype="multipart/form-data">
103
+ <label for="file">Select Image:</label>
104
+ <input type="file" name="file" id="xray-file" required>
105
+ <button type="button" onclick="predictDisease('chest_xray')">Predict</button>
106
+ </form>
107
+ <div class="prediction-result" id="chest_xray-result"></div>
108
+
109
+ <!-- Dropdown for Research Links -->
110
+ <div class="dropdown">
111
+ <button class="dropbtn">Research Papers</button>
112
+ <div class="dropdown-content" id="chest_xray-research-links"></div>
113
+ </div>
114
+ <!-- Dropdown for Case Reports -->
115
+ <div class="dropdown">
116
+ <button class="dropbtn">Case Reports</button>
117
+ <div class="dropdown-content" id="chest_xray-case-report-links"></div>
118
+ </div>
119
+ </div>
120
+
121
+ <!-- Chat with LLM -->
122
+ <div id="llm" class="tab-content">
123
+ <h2>Ask the AI Health Assistant</h2>
124
+ <div id="llm-answer"></div>
125
+ </div>
126
+ </div>
127
+
128
+ <!-- LLM Prompt Bar at the Bottom -->
129
+ <div class="llm-prompt-bar">
130
+ <input type="text" id="llm-prompt" placeholder="Ask your question here...">
131
+ <button onclick="askLLM()">Ask</button>
132
+ </div>
133
+
134
+ <!-- Scripts -->
135
+ <script>
136
+ const researchLinks = {
137
+ 'Diverticulosis': {
138
+ papers: [
139
+ { title: 'Diverticulosis Research Paper 1', url: 'https://www.ncbi.nlm.nih.gov/books/NBK430771/' },
140
+ { title: 'Diverticulosis Research Paper 2', url: 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410187/' }
141
+ ],
142
+ reports: [
143
+ { title: 'Diverticulosis Case Report 1', url: 'https://jmedicalcasereports.biomedcentral.com/articles/10.1186/1752-1947-4-172' },
144
+ { title: 'Diverticulosis Case Report 2', url: 'https://wjes.biomedcentral.com/articles/10.1186/1749-7922-3-10' },
145
+ { title: 'Diverticulosis Case Report 3', url: 'https://www.sciencedirect.com/science/article/pii/S2210261223000743' }
146
+ ]
147
+ },
148
+ 'Neoplasm': {
149
+ papers: [
150
+ { title: 'Neoplasm Research Paper 1', url: 'https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/neoplasm' },
151
+ { title: 'Neoplasm Research Paper 2', url: 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9846320/' }
152
+ ],
153
+ reports: [
154
+ { title: 'Neoplasm Case Report 1', url: 'https://bmcwomenshealth.biomedcentral.com/articles/10.1186/s12905-022-01766-2' },
155
+ { title: 'Neoplasm Case Report 2', url: 'https://issoonline.biomedcentral.com/articles/10.1186/1477-7800-6-6' },
156
+ { title: 'Neoplasm Case Report 3', url: 'https://wjso.biomedcentral.com/articles/10.1186/1477-7819-5-98' }
157
+ ]
158
+ },
159
+ 'Peritonitis': {
160
+ papers: [
161
+ { title: 'Peritonitis Research Paper 1', url: 'https://my.clevelandclinic.org/health/diseases/17831-peritonitis' },
162
+ { title: 'Peritonitis Research Paper 2', url: 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152366/' }
163
+ ],
164
+ reports: [
165
+ { title: 'Peritonitis Case Report 1', url: 'https://pubmed.ncbi.nlm.nih.gov/11396540/' },
166
+ { title: 'Peritonitis Case Report 2', url: 'https://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-13-S1-P34' },
167
+ { title: 'Peritonitis Case Report 3', url: 'https://ccforum.biomedcentral.com/articles/10.1186/cc12906' }
168
+ ]
169
+ },
170
+ 'Ureters': {
171
+ papers: [
172
+ { title: 'Ureters Research Paper 1', url: 'https://www.sciencedirect.com/topics/medicine-and-dentistry/ureter-disease' },
173
+ { title: 'Ureters Research Paper 2', url: 'https://www.ncbi.nlm.nih.gov/books/NBK507817/' }
174
+ ],
175
+ reports: [
176
+ { title: 'Ureters Case Report 1', url: 'https://bmcurol.biomedcentral.com/articles/10.1186/1471-2490-12-35' },
177
+ { title: 'Ureters Case Report 2', url: 'https://bmcurol.biomedcentral.com/articles/10.1186/s12894-018-0396-6' },
178
+ { title: 'Ureters Case Report 3', url: 'https://bmcurol.biomedcentral.com/articles/10.1186/s12894-018-0396-6' }
179
+ ]
180
+ },
181
+ 'Large Cell Carcinoma': {
182
+ papers: [
183
+ { title: 'Large Cell Carcinoma Research Paper 1', url: 'https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/large-cell-carcinoma' },
184
+ { title: 'Large Cell Carcinoma Research Paper 2', url: 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531643/' }
185
+ ],
186
+ reports: [
187
+ { title: 'Large Cell Carcinoma Case Report 1', url: 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481563/' },
188
+ { title: 'Large Cell Carcinoma Case Report 2', url: 'https://wjso.biomedcentral.com/articles/10.1186/1477-7819-11-205' },
189
+ { title: 'Large Cell Carcinoma Case Report 3', url: 'https://cardiothoracicsurgery.biomedcentral.com/articles/10.1186/s13019-023-02349-4' }
190
+ ]
191
+ },
192
+ 'Adenocarcinoma': {
193
+ papers: [
194
+ { title: 'Adenocarcinoma Research Paper 1', url: 'https://www.ncbi.nlm.nih.gov/books/NBK562137/' },
195
+ { title: 'Adenocarcinoma Research Paper 2', url: 'https://biolres.biomedcentral.com/articles/10.1186/s40659-020-00281-8' }
196
+ ],
197
+ reports: [
198
+ { title: 'Adenocarcinoma Case Report 1', url: 'https://hccpjournal.biomedcentral.com/articles/10.1186/1897-4287-8-S1-P4' },
199
+ { title: 'Adenocarcinoma Case Report 2', url: 'https://cancerandmetabolism.biomedcentral.com/articles/10.1186/2049-3002-2-S1-P76' },
200
+ { title: 'Adenocarcinoma Case Report 3', url: 'https://biologydirect.biomedcentral.com/articles/10.1186/s13062-023-00419-0' }
201
+ ]
202
+ },
203
+ 'Squamous Cell Carcinoma': {
204
+ papers: [
205
+ { title: 'Squamous Cell Carcinoma Research Paper 1', url: 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319751/' },
206
+ { title: 'Squamous Cell Carcinoma Research Paper 2', url: 'https://www.ncbi.nlm.nih.gov/books/NBK441939/' }
207
+ ],
208
+ reports: [
209
+ { title: 'Squamous Cell Carcinoma Case Report 1', url: 'https://headandneckoncology.biomedcentral.com/articles/10.1186/1758-3284-1-S1-P32' },
210
+ { title: 'Squamous Cell Carcinoma Case Report 2', url: 'https://headandneckoncology.biomedcentral.com/articles/10.1186/1758-3284-1-S1-P17' },
211
+ { title: 'Squamous Cell Carcinoma Case Report 3', url: 'https://bmcproc.biomedcentral.com/articles/10.1186/1753-6561-7-S2-P25' }
212
+ ]
213
+ },
214
+ 'Pneumonia': {
215
+ papers: [
216
+ { title: 'Pneumonia Research Paper 1', url: 'https://www.who.int/news-room/fact-sheets/detail/pneumonia' },
217
+ { title: 'Pneumonia Research Paper 2', url: 'https://www.ncbi.nlm.nih.gov/books/NBK513321/' }
218
+ ],
219
+ reports: [
220
+ { title: 'Pneumonia Case Report 1', url: 'https://waojournal.biomedcentral.com/articles/10.1186/1939-4551-6-S1-P56' },
221
+ { title: 'Pneumonia Case Report 2', url: 'https://ccforum.biomedcentral.com/articles/10.1186/cc12928' },
222
+ { title: 'Pneumonia Case Report 3', url: 'https://waojournal.biomedcentral.com/articles/10.1186/1939-4551-6-S1-P191' }
223
+ ]
224
+ }
225
+ // Other disease links remain the same
226
+ };
227
+
228
+ // JavaScript to handle tab switching
229
+ const tabButtons = document.querySelectorAll('.tab-button');
230
+ const tabContents = document.querySelectorAll('.tab-content');
231
+
232
+ tabButtons.forEach(button => {
233
+ button.addEventListener('click', () => {
234
+ tabButtons.forEach(btn => btn.classList.remove('active'));
235
+ tabContents.forEach(content => content.classList.remove('active'));
236
+
237
+ button.classList.add('active');
238
+ document.getElementById(button.dataset.target).classList.add('active');
239
+ });
240
+ });
241
+
242
+ // Function to make predictions
243
+ function predictDisease(diseaseType) {
244
+ console.log('Predicting for: ' + diseaseType); // Add this for debugging
245
+ let formData = new FormData(document.getElementById(diseaseType + '-form'));
246
+ fetch(`/predict_${diseaseType}`, {
247
+ method: 'POST',
248
+ body: formData
249
+ })
250
+ .then(response => response.json())
251
+ .then(data => {
252
+ document.getElementById(diseaseType + '-result').innerText = data.prediction;
253
+ populateLinks(data.prediction, diseaseType); // Pass diseaseType to populateLinks
254
+ })
255
+ .catch(error => {
256
+ console.error('Error:', error);
257
+ });
258
+ }
259
+
260
+
261
+ // Populate the research and case report links
262
+ function populateLinks(prediction, diseaseType) {
263
+ const links = researchLinks[prediction.trim()];
264
+ const researchLinksDiv = document.getElementById(diseaseType + '-research-links');
265
+ const caseReportLinksDiv = document.getElementById(diseaseType + '-case-report-links');
266
+
267
+ if (links) {
268
+ researchLinksDiv.innerHTML = links.papers.map(paper => `<a href="${paper.url}" target="_blank">${paper.title}</a>`).join('');
269
+ caseReportLinksDiv.innerHTML = links.reports.map(report => `<a href="${report.url}" target="_blank">${report.title}</a>`).join('');
270
+ } else {
271
+ researchLinksDiv.innerHTML = '<p>No research papers available for this prediction</p>';
272
+ caseReportLinksDiv.innerHTML = '<p>No case reports available for this prediction</p>';
273
+ }
274
+
275
+ }
276
+
277
+
278
+ // JavaScript function to ask the LLM
279
+ function askLLM() {
280
+ const question = document.getElementById('llm-prompt').value;
281
+ const answerContainer = document.getElementById('llm-answer');
282
+
283
+ fetch('/ask_llm', {
284
+ method: 'POST',
285
+ headers: {
286
+ 'Content-Type': 'application/json',
287
+ },
288
+ body: JSON.stringify({ question: question }),
289
+ })
290
+ .then(response => response.json())
291
+ .then(data => {
292
+ answerContainer.innerHTML = `<h3>Answer: ${data.answer}</h3>`;
293
+ })
294
+ .catch(error => {
295
+ console.error('Error:', error);
296
+ answerContainer.innerHTML = '<h3>Error: Unable to fetch answer</h3>';
297
+ });
298
+ }
299
+ </script>
300
+ </body>
301
+ </html>