import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer from threading import Thread from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.embeddings.huggingface import HuggingFaceEmbedding document = SimpleDirectoryReader("sft/dataset").load_data() from llama_index.core import PromptTemplate system_prompt = "You are a QA bot. Given the questions answer it correctly." query_wrapper_prompt = PromptTemplate("<|user|>:{query_str}\n<|assistant|>:") llm = HuggingFaceLLM( context_window=2048, max_new_tokens=256, generate_kwargs={"temperature":0.0, "do_sample":False}, system_prompt=system_prompt, query_wrapper_prompt=query_wrapper_prompt, tokenizer_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0", model_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0", device_map="cuda", model_kwargs={"torch_dtype":torch.bfloat16}, ) embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") service_context = ServiceContext.from_defaults( chunk_size=256, llm=llm, embed_model=embed_model ) index = VectorStoreIndex.from_documents(document, service_context = service_context) query_engine = index.as_query_engine() # Defining a custom stopping criteria class for the model's text generation. class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [2] # IDs of tokens where the generation should stop. for stop_id in stop_ids: if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token. return True return False # Function to generate model predictions. def predict(message, history): history_transformer_format = history + [[message, ""]] stop = StopOnTokens() # Formatting the input for the model. messages = "".join(["".join(["\n<|user|>:" + item[0], "\n<|assistant|>:" + item[1]]) for item in history_transformer_format]) model_inputs = tokenizer([messages], return_tensors="pt").to(device) streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, top_p=0.95, top_k=50, temperature=0.5, num_beams=1, stopping_criteria=StoppingCriteriaList([stop]) ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # Starting the generation in a separate thread. partial_message = "" for new_token in streamer: partial_message += new_token if '' in partial_message: # Breaking the loop if the stop token is generated. break yield partial_message def predict(input, history): response = query_engine.query(input) return str(response) gr.ChatInterface(predict).launch(share=True) # # Loading the tokenizer and model from Hugging Face's model hub. # tokenizer = AutoTokenizer.from_pretrained("output/1T_FT_lr1e-5_ep5_top1_2024-03-04/checkpoint-575") # model = AutoModelForCausalLM.from_pretrained("output/1T_FT_lr1e-5_ep5_top1_2024-03-04/checkpoint-575") # # using CUDA for an optimal experience # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # model = model.to(device) # # Defining a custom stopping criteria class for the model's text generation. # class StopOnTokens(StoppingCriteria): # def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: # stop_ids = [2] # IDs of tokens where the generation should stop. # for stop_id in stop_ids: # if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token. # return True # return False # # Function to generate model predictions. # def predict(message, history): # history_transformer_format = history + [[message, ""]] # stop = StopOnTokens() # # Formatting the input for the model. # messages = "".join(["".join(["\n<|user|>:" + item[0], "\n<|assistant|>:" + item[1]]) # for item in history_transformer_format]) # model_inputs = tokenizer([messages], return_tensors="pt").to(device) # streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) # generate_kwargs = dict( # model_inputs, # streamer=streamer, # max_new_tokens=1024, # do_sample=True, # top_p=0.95, # top_k=50, # temperature=0.5, # num_beams=1, # stopping_criteria=StoppingCriteriaList([stop]) # ) # t = Thread(target=model.generate, kwargs=generate_kwargs) # t.start() # Starting the generation in a separate thread. # partial_message = "" # for new_token in streamer: # partial_message += new_token # if '' in partial_message: # Breaking the loop if the stop token is generated. # break # yield partial_message # # Setting up the Gradio chat interface. # gr.ChatInterface(predict, # title="Tinyllama_chatBot", # description="Ask Tiny llama any questions", # examples=['How to cook a fish?', 'Who is the president of US now?'] # ).launch(share=True) # Launching the web interface.