first model using just 100 episodes
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -266.32 +/- 117.05
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5019cd8c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5019cd8ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5019cd8d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5019cd8dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f5019cd8e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f5019cd8ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5019cd8f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5019cd9000>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5019cd9090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5019cd9120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5019cd91b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5019cd9240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f502648e700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 100, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687818832950725533, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACJn8L49oYU/PZBbv/ldI780uks+2KXvvQAAAAAAAAAAMxlsPQLmhD/PFxA+0cs8v2AKxL2rPuK8AAAAAAAAAADmvi29FrO7Pz7lBr+Z7oE+Fvl+PS1D3j0AAAAAAAAAAIbgaT46+QQ+mT6kvq350b3H1Zi/uJSXvwAAAAAAAAAAgHu/vRrvsz96fuK+4H8Bvv3RdD0Lyoc9AAAAAAAAAADmJW69dLSrP3irQb+aYOq+hAe3PUQylj4AAAAAAAAAABq04z7BixQ/XuUqP+XziL/WoNG+0WEpvgAAAAAAAAAAwDY3vjeWZj+uygK/uzRpv5h13r2uSjq+AAAAAAAAAABN5669eEyfP50vh77MUQO/H1jQvdb7lb4AAAAAAAAAAJp3lrwpa3Q/w2c6PeIJQL+EgKC+ajJAvgAAAAAAAAAA4EEYPyZYFz+fTo4/JUKZv8lVZL8S8Va+AAAAAAAAAADqd9S+EYfCPaeoJb/rmLO/dKVTPbuMcb4AAAAAAAAAAOYCez6UmtY+BSdVPlkDjr9eOkw+AxQgPgAAAAAAAAAAgxWUvgxRWz9DGfe+fFVyv324az6eLWS9AAAAAAAAAABKqQ4/aatRPcDyxDrhXt88lrugvo6O/bsAAAAAAACAP5oYJD33J74/8i11PtCakzwsIjC+buSKvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -162.84, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFvbn/DLr5aMAWyUS0uMAXSUR0BgV3j+717IdX2UKGgGR8BeVOgQHzH0aAdLbmgIR0BgV/eLvTgEdX2UKGgGR8BXBfFefI0ZaAdLVGgIR0BgWEYQ8OkMdX2UKGgGR8BJo75M10koaAdLSWgIR0BgWL4Ju2qldX2UKGgGR8BL84/NZ/0/aAdLQ2gIR0BgWPeUILPVdX2UKGgGR8BZUka6z3RHaAdLa2gIR0BgWz7bcoH+dX2UKGgGR8B1lC3pfQa8aAdLVmgIR0BgW7fFaSs9dX2UKGgGR8B0KpuWKMvRaAdLWWgIR0BgW4G6f8MvdX2UKGgGR8Bana7Ackt3aAdLWWgIR0BgXBY1YQrddX2UKGgGR8BWz3PJJXhgaAdLX2gIR0BgW+oLofSydX2UKGgGR8BYUKfe1rqMaAdLTWgIR0BgXHOQhfShdX2UKGgGR8BXgXj2i+L4aAdLT2gIR0BgXraPCEYgdX2UKGgGR8BWqcAeaKDTaAdLcWgIR0BgYKqp97WvdX2UKGgGR8BmgL0OEug6aAdLTmgIR0BgYQC4jKPodX2UKGgGR8Bx6QjKPn0TaAdLXGgIR0BgYXChvitJdX2UKGgGR8BiS6ElE7W/aAdLYWgIR0BgY58OTaCddX2UKGgGR8Baa91+y7f6aAdLZGgIR0BgZEhaC+URdX2UKGgGR8BcJeo1k1/EaAdLdmgIR0BgZL/KhcqwdX2UKGgGR8BoKpp35eqraAdLSmgIR0BgZRjUd7v5dX2UKGgGR8Bg7hubZvkzaAdLWWgIR0BgZnpUxVQzdX2UKGgGR8Bh45GKAJ9iaAdLWGgIR0BgZo0bcXWOdX2UKGgGR8BLCk8aGYa6aAdLc2gIR0BgZ0RzzVc2dX2UKGgGR8Bnj/iaRZEEaAdLQWgIR0BgZxC+lCTmdX2UKGgGR8BzuroQnQY2aAdLZWgIR0BgaLWy1NQCdX2UKGgGR8BY6lAmiQDFaAdLhGgIR0BgaKwfQrtmdX2UKGgGR8BVeBPoFFDwaAdLg2gIR0BgaQDTz/ZNdX2UKGgGR8B0GZmf5DZ2aAdLcGgIR0Bgacc2itaIdX2UKGgGR8Bn6vJo0ygxaAdLcWgIR0Bgaq/j81n/dX2UKGgGR8BTALBKtga4aAdLUGgIR0Bgau9QGfPHdX2UKGgGR8BTu3dXT3IuaAdLQGgIR0BgbEgEEC/5dX2UKGgGR8BXwOfukUKzaAdLYGgIR0BgbQvFm4AkdX2UKGgGR8Bb58QVbiZOaAdLQGgIR0BgbtXtBv74dX2UKGgGR8A32IZqEeySaAdLY2gIR0Bgb998Z1mrdX2UKGgGR8BnWFbgTAWSaAdLd2gIR0BgcD3AVO9GdX2UKGgGR8BbR0ornTy8aAdLU2gIR0BgcK8an753dX2UKGgGR8BH45id8RcvaAdLYmgIR0BgcOAbyYoidX2UKGgGR8B2ff2+PBBSaAdLaWgIR0BgchJbt7a7dX2UKGgGR8BnPjiGWUr1aAdLWmgIR0Bgck+u/1xsdX2UKGgGR8BQFUxASnLraAdLWGgIR0Bgc3BxgiNbdX2UKGgGR8BWrBsyi22HaAdLR2gIR0Bgc3aJyhi9dX2UKGgGR8B4KqknCwbEaAdLWGgIR0BgdHHaN+9bdX2UKGgGR8B0FI3WFvhqaAdLaGgIR0BgdUQK8cuKdX2UKGgGR8BWBMu8K5TZaAdLbGgIR0BgdhK8L8aXdX2UKGgGR8BbedG7SRbKaAdLgmgIR0BgdkTxoZhsdX2UKGgGR8Bb54IjW07baAdLaGgIR0Bgdx6lchTwdX2UKGgGR8Bt6AG2TgVHaAdLZGgIR0BgeUX1rZandX2UKGgGR8B2QDrjYI0JaAdLc2gIR0Bgek2xY7q6dX2UKGgGR8BX/mZiNKh+aAdLTWgIR0Bgehqynk1edX2UKGgGR8Bf4Qnc+JP7aAdLZmgIR0Bge2lj3EhrdX2UKGgGR8BgfGOOsDGMaAdLaWgIR0BgfNeY2Kl6dX2UKGgGR8Bd+OtSydFwaAdLaGgIR0BgfRul41P4dX2UKGgGR8BTkROgxrSFaAdLPWgIR0BgfcstkFwDdX2UKGgGR8ByULcXWOIZaAdLX2gIR0Bgfdf7aZhKdX2UKGgGR8BJt3CsOoYOaAdLeGgIR0Bgf71RLsa9dX2UKGgGR8BfV55u63AmaAdLXmgIR0BggD2lEZzgdX2UKGgGR8Barznmq5skaAdLWGgIR0BggZPqLS/kdX2UKGgGR8BcNsnmaH9FaAdLdWgIR0BggjnTy8SPdX2UKGgGR8BwY9JUYKplaAdLf2gIR0BggkmWt2cKdX2UKGgGR8BSM+TvAoG6aAdLP2gIR0BggonndO6/dX2UKGgGR8Bpw8IZ62ORaAdLfGgIR0BggyOFQEZBdX2UKGgGR8BchxWLgn+iaAdLZ2gIR0BghFvMr3CbdX2UKGgGR8BUhkzGgi/xaAdLQWgIR0BghTHn2ZiNdX2UKGgGR8BXJHizcAR1aAdLVWgIR0BghQNNJvpAdX2UKGgGR0BFDEFfReC1aAdLTWgIR0BghUUqQRwqdX2UKGgGR8BgW/Kji4rjaAdLRGgIR0BghcUuctoSdX2UKGgGR8BhJxtDUmUoaAdLbWgIR0Bghxj6N2kjdX2UKGgGR8Ba3L74zrNXaAdLkmgIR0Bgh6Z2IO6NdX2UKGgGR8BZL0X531SPaAdLS2gIR0BgibhDPWxydX2UKGgGR8BggJpSJj2BaAdLX2gIR0Bgic/KQq7RdX2UKGgGR8BX6K3qiXY2aAdLQ2gIR0BgisyP+4smdX2UKGgGR8BU8KCUX531aAdLSGgIR0Bgi2CTUy57dX2UKGgGR8BbGCh37k4naAdLTGgIR0Bgiz7Q9ic5dX2UKGgGR8BYzjrAxi5NaAdLc2gIR0BgjI/3WWhRdX2UKGgGR8BXhhmGucMFaAdLR2gIR0BgjVwcYIjXdX2UKGgGR8BRnTZpSJj2aAdLO2gIR0BgjVeF+NLldX2UKGgGR8BuOHfGdZq3aAdLbGgIR0BgjaPluFYddX2UKGgGR8BkQGus90RwaAdLa2gIR0BgkJbQkX1rdX2UKGgGR8BnzQy2x6fKaAdLdGgIR0BgkRsZYPoWdX2UKGgGR8BUKda+vhZRaAdLS2gIR0BgkUuUUwi8dX2UKGgGR8BguIsEq2BraAdLXWgIR0BgkRDiOvMbdX2UKGgGR8BlERjJ+2E1aAdLX2gIR0BgkQ/C66J7dX2UKGgGR8BOn1vddmg8aAdLamgIR0BgkrNSqEOBdX2UKGgGR8Bn3EMLF4s3aAdLW2gIR0BgktGAkLQYdX2UKGgGR8BaJLNGEwnIaAdLPGgIR0BglLgwXZXddX2UKGgGR8Bd+5prULDyaAdLRmgIR0BglhbOeJ53dX2UKGgGR8BZIiqABkqdaAdLaWgIR0BglxwbVBlddX2UKGgGR8B2OU5imVJMaAdLXWgIR0BgltUlzEJjdX2UKGgGR8BUtw9FF2FGaAdLcWgIR0BgmBKjBVMmdX2UKGgGR8B3BzPD50r9aAdLcWgIR0BgmPmYBvJjdX2UKGgGR8BUUK+WWyC4aAdLQWgIR0BgmVlK9PDYdX2UKGgGR8BZZHMUypJgaAdLXWgIR0BgmU4rBj4IdX2UKGgGR8Bsot9fCyhSaAdLc2gIR0BgmdmcvugIdX2UKGgGR8BwJ+HzpX6qaAdLfGgIR0BgnAgieNDMdX2UKGgGR8BmLeeHzpX7aAdLT2gIR0BgnHXNC7btdX2UKGgGR8BQ/ZhnanJlaAdLRWgIR0BgnaPwNLDidX2UKGgGR8BnUx2nsLOSaAdLbmgIR0Bgnp82Jiy6dX2UKGgGR8Bar1mz0HyFaAdLaGgIR0BgnpSeiBXkdX2UKGgGR8B4sGnZTQ3QaAdLb2gIR0Bgnz6LwWnCdX2UKGgGR8BR4Kujh1klaAdLRGgIR0BgoPrSmZVodX2UKGgGR8BeXKXnhbW3aAdLU2gIR0BgoO1KGtZFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 8, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abdb210e7881352357c833161d1ddde1ef334414e7dd881513f79cfd31e38559
|
3 |
+
size 146601
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5019cd8c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5019cd8ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5019cd8d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5019cd8dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5019cd8e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5019cd8ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5019cd8f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5019cd9000>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5019cd9090>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5019cd9120>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5019cd91b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5019cd9240>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f502648e700>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 16384,
|
25 |
+
"_total_timesteps": 100,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1687818832950725533,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACJn8L49oYU/PZBbv/ldI780uks+2KXvvQAAAAAAAAAAMxlsPQLmhD/PFxA+0cs8v2AKxL2rPuK8AAAAAAAAAADmvi29FrO7Pz7lBr+Z7oE+Fvl+PS1D3j0AAAAAAAAAAIbgaT46+QQ+mT6kvq350b3H1Zi/uJSXvwAAAAAAAAAAgHu/vRrvsz96fuK+4H8Bvv3RdD0Lyoc9AAAAAAAAAADmJW69dLSrP3irQb+aYOq+hAe3PUQylj4AAAAAAAAAABq04z7BixQ/XuUqP+XziL/WoNG+0WEpvgAAAAAAAAAAwDY3vjeWZj+uygK/uzRpv5h13r2uSjq+AAAAAAAAAABN5669eEyfP50vh77MUQO/H1jQvdb7lb4AAAAAAAAAAJp3lrwpa3Q/w2c6PeIJQL+EgKC+ajJAvgAAAAAAAAAA4EEYPyZYFz+fTo4/JUKZv8lVZL8S8Va+AAAAAAAAAADqd9S+EYfCPaeoJb/rmLO/dKVTPbuMcb4AAAAAAAAAAOYCez6UmtY+BSdVPlkDjr9eOkw+AxQgPgAAAAAAAAAAgxWUvgxRWz9DGfe+fFVyv324az6eLWS9AAAAAAAAAABKqQ4/aatRPcDyxDrhXt88lrugvo6O/bsAAAAAAACAP5oYJD33J74/8i11PtCakzwsIjC+buSKvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -162.84,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFvbn/DLr5aMAWyUS0uMAXSUR0BgV3j+717IdX2UKGgGR8BeVOgQHzH0aAdLbmgIR0BgV/eLvTgEdX2UKGgGR8BXBfFefI0ZaAdLVGgIR0BgWEYQ8OkMdX2UKGgGR8BJo75M10koaAdLSWgIR0BgWL4Ju2qldX2UKGgGR8BL84/NZ/0/aAdLQ2gIR0BgWPeUILPVdX2UKGgGR8BZUka6z3RHaAdLa2gIR0BgWz7bcoH+dX2UKGgGR8B1lC3pfQa8aAdLVmgIR0BgW7fFaSs9dX2UKGgGR8B0KpuWKMvRaAdLWWgIR0BgW4G6f8MvdX2UKGgGR8Bana7Ackt3aAdLWWgIR0BgXBY1YQrddX2UKGgGR8BWz3PJJXhgaAdLX2gIR0BgW+oLofSydX2UKGgGR8BYUKfe1rqMaAdLTWgIR0BgXHOQhfShdX2UKGgGR8BXgXj2i+L4aAdLT2gIR0BgXraPCEYgdX2UKGgGR8BWqcAeaKDTaAdLcWgIR0BgYKqp97WvdX2UKGgGR8BmgL0OEug6aAdLTmgIR0BgYQC4jKPodX2UKGgGR8Bx6QjKPn0TaAdLXGgIR0BgYXChvitJdX2UKGgGR8BiS6ElE7W/aAdLYWgIR0BgY58OTaCddX2UKGgGR8Baa91+y7f6aAdLZGgIR0BgZEhaC+URdX2UKGgGR8BcJeo1k1/EaAdLdmgIR0BgZL/KhcqwdX2UKGgGR8BoKpp35eqraAdLSmgIR0BgZRjUd7v5dX2UKGgGR8Bg7hubZvkzaAdLWWgIR0BgZnpUxVQzdX2UKGgGR8Bh45GKAJ9iaAdLWGgIR0BgZo0bcXWOdX2UKGgGR8BLCk8aGYa6aAdLc2gIR0BgZ0RzzVc2dX2UKGgGR8Bnj/iaRZEEaAdLQWgIR0BgZxC+lCTmdX2UKGgGR8BzuroQnQY2aAdLZWgIR0BgaLWy1NQCdX2UKGgGR8BY6lAmiQDFaAdLhGgIR0BgaKwfQrtmdX2UKGgGR8BVeBPoFFDwaAdLg2gIR0BgaQDTz/ZNdX2UKGgGR8B0GZmf5DZ2aAdLcGgIR0Bgacc2itaIdX2UKGgGR8Bn6vJo0ygxaAdLcWgIR0Bgaq/j81n/dX2UKGgGR8BTALBKtga4aAdLUGgIR0Bgau9QGfPHdX2UKGgGR8BTu3dXT3IuaAdLQGgIR0BgbEgEEC/5dX2UKGgGR8BXwOfukUKzaAdLYGgIR0BgbQvFm4AkdX2UKGgGR8Bb58QVbiZOaAdLQGgIR0BgbtXtBv74dX2UKGgGR8A32IZqEeySaAdLY2gIR0Bgb998Z1mrdX2UKGgGR8BnWFbgTAWSaAdLd2gIR0BgcD3AVO9GdX2UKGgGR8BbR0ornTy8aAdLU2gIR0BgcK8an753dX2UKGgGR8BH45id8RcvaAdLYmgIR0BgcOAbyYoidX2UKGgGR8B2ff2+PBBSaAdLaWgIR0BgchJbt7a7dX2UKGgGR8BnPjiGWUr1aAdLWmgIR0Bgck+u/1xsdX2UKGgGR8BQFUxASnLraAdLWGgIR0Bgc3BxgiNbdX2UKGgGR8BWrBsyi22HaAdLR2gIR0Bgc3aJyhi9dX2UKGgGR8B4KqknCwbEaAdLWGgIR0BgdHHaN+9bdX2UKGgGR8B0FI3WFvhqaAdLaGgIR0BgdUQK8cuKdX2UKGgGR8BWBMu8K5TZaAdLbGgIR0BgdhK8L8aXdX2UKGgGR8BbedG7SRbKaAdLgmgIR0BgdkTxoZhsdX2UKGgGR8Bb54IjW07baAdLaGgIR0Bgdx6lchTwdX2UKGgGR8Bt6AG2TgVHaAdLZGgIR0BgeUX1rZandX2UKGgGR8B2QDrjYI0JaAdLc2gIR0Bgek2xY7q6dX2UKGgGR8BX/mZiNKh+aAdLTWgIR0Bgehqynk1edX2UKGgGR8Bf4Qnc+JP7aAdLZmgIR0Bge2lj3EhrdX2UKGgGR8BgfGOOsDGMaAdLaWgIR0BgfNeY2Kl6dX2UKGgGR8Bd+OtSydFwaAdLaGgIR0BgfRul41P4dX2UKGgGR8BTkROgxrSFaAdLPWgIR0BgfcstkFwDdX2UKGgGR8ByULcXWOIZaAdLX2gIR0Bgfdf7aZhKdX2UKGgGR8BJt3CsOoYOaAdLeGgIR0Bgf71RLsa9dX2UKGgGR8BfV55u63AmaAdLXmgIR0BggD2lEZzgdX2UKGgGR8Barznmq5skaAdLWGgIR0BggZPqLS/kdX2UKGgGR8BcNsnmaH9FaAdLdWgIR0BggjnTy8SPdX2UKGgGR8BwY9JUYKplaAdLf2gIR0BggkmWt2cKdX2UKGgGR8BSM+TvAoG6aAdLP2gIR0BggonndO6/dX2UKGgGR8Bpw8IZ62ORaAdLfGgIR0BggyOFQEZBdX2UKGgGR8BchxWLgn+iaAdLZ2gIR0BghFvMr3CbdX2UKGgGR8BUhkzGgi/xaAdLQWgIR0BghTHn2ZiNdX2UKGgGR8BXJHizcAR1aAdLVWgIR0BghQNNJvpAdX2UKGgGR0BFDEFfReC1aAdLTWgIR0BghUUqQRwqdX2UKGgGR8BgW/Kji4rjaAdLRGgIR0BghcUuctoSdX2UKGgGR8BhJxtDUmUoaAdLbWgIR0Bghxj6N2kjdX2UKGgGR8Ba3L74zrNXaAdLkmgIR0Bgh6Z2IO6NdX2UKGgGR8BZL0X531SPaAdLS2gIR0BgibhDPWxydX2UKGgGR8BggJpSJj2BaAdLX2gIR0Bgic/KQq7RdX2UKGgGR8BX6K3qiXY2aAdLQ2gIR0BgisyP+4smdX2UKGgGR8BU8KCUX531aAdLSGgIR0Bgi2CTUy57dX2UKGgGR8BbGCh37k4naAdLTGgIR0Bgiz7Q9ic5dX2UKGgGR8BYzjrAxi5NaAdLc2gIR0BgjI/3WWhRdX2UKGgGR8BXhhmGucMFaAdLR2gIR0BgjVwcYIjXdX2UKGgGR8BRnTZpSJj2aAdLO2gIR0BgjVeF+NLldX2UKGgGR8BuOHfGdZq3aAdLbGgIR0BgjaPluFYddX2UKGgGR8BkQGus90RwaAdLa2gIR0BgkJbQkX1rdX2UKGgGR8BnzQy2x6fKaAdLdGgIR0BgkRsZYPoWdX2UKGgGR8BUKda+vhZRaAdLS2gIR0BgkUuUUwi8dX2UKGgGR8BguIsEq2BraAdLXWgIR0BgkRDiOvMbdX2UKGgGR8BlERjJ+2E1aAdLX2gIR0BgkQ/C66J7dX2UKGgGR8BOn1vddmg8aAdLamgIR0BgkrNSqEOBdX2UKGgGR8Bn3EMLF4s3aAdLW2gIR0BgktGAkLQYdX2UKGgGR8BaJLNGEwnIaAdLPGgIR0BglLgwXZXddX2UKGgGR8Bd+5prULDyaAdLRmgIR0BglhbOeJ53dX2UKGgGR8BZIiqABkqdaAdLaWgIR0BglxwbVBlddX2UKGgGR8B2OU5imVJMaAdLXWgIR0BgltUlzEJjdX2UKGgGR8BUtw9FF2FGaAdLcWgIR0BgmBKjBVMmdX2UKGgGR8B3BzPD50r9aAdLcWgIR0BgmPmYBvJjdX2UKGgGR8BUUK+WWyC4aAdLQWgIR0BgmVlK9PDYdX2UKGgGR8BZZHMUypJgaAdLXWgIR0BgmU4rBj4IdX2UKGgGR8Bsot9fCyhSaAdLc2gIR0BgmdmcvugIdX2UKGgGR8BwJ+HzpX6qaAdLfGgIR0BgnAgieNDMdX2UKGgGR8BmLeeHzpX7aAdLT2gIR0BgnHXNC7btdX2UKGgGR8BQ/ZhnanJlaAdLRWgIR0BgnaPwNLDidX2UKGgGR8BnUx2nsLOSaAdLbmgIR0Bgnp82Jiy6dX2UKGgGR8Bar1mz0HyFaAdLaGgIR0BgnpSeiBXkdX2UKGgGR8B4sGnZTQ3QaAdLb2gIR0Bgnz6LwWnCdX2UKGgGR8BR4Kujh1klaAdLRGgIR0BgoPrSmZVodX2UKGgGR8BeXKXnhbW3aAdLU2gIR0BgoO1KGtZFdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 8,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7d7132a50070ea5b6aaf6d54811565c33cdc0d11e82828a951e0cb38923d47c
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6f56af4ccf153ca666af601ca0cd7040be881e4d278cce016d3924de9f069e4
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (162 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -266.3231953, "std_reward": 117.05282561986462, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-26T22:40:09.115820"}
|