--- license: mit tags: - audio-generation --- [Dance Diffusion](https://github.com/Harmonai-org/sample-generator) is now available in 🧨 Diffusers. ## FP32 ```python # !pip install diffusers[torch] accelerate scipy from diffusers import DiffusionPipeline import scipy.io model_id = "harmonai/maestro-150k" pipeline = DiffusionPipeline.from_pretrained(model_id) pipeline = pipeline.to("cuda") audios = pipeline(audio_length_in_s=4.0).audios # To save locally for i, audio in enumerate(audios): scipy.io.wavfile.write(f"maestro_test_{i}.wav", pipe.unet.sample_rate, audio.transpose()) # To dislay in google colab import IPython.display as ipd for audio in audios: display(ipd.Audio(audio, rate=pipe.unet.sample_rate)) ``` ## FP16 Faster at a small loss of quality ```python # !pip install diffusers[torch] accelerate scipy from diffusers import DiffusionPipeline import scipy.io import torch model_id = "harmonai/maestro-150k" pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipeline = pipeline.to("cuda") audios = pipeline(audio_length_in_s=4.0).audios # To save locally for i, audio in enumerate(audios): scipy.io.wavfile.write(f"maestro_test_{i}.wav", pipe.unet.sample_rate, audio.transpose()) # To dislay in google colab import IPython.display as ipd for audio in audios: display(ipd.Audio(audio, rate=pipe.unet.sample_rate)) ```