File size: 1,253 Bytes
ac2764c
 
 
 
 
 
 
 
 
9ac1f4d
ac2764c
271afe2
ac2764c
4e1ae22
 
 
 
 
 
 
 
ac2764c
 
 
 
 
 
 
 
 
 
 
 
 
 
9ac1f4d
ac2764c
271afe2
ac2764c
4e1ae22
 
 
 
 
 
 
 
ac2764c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
## FP32

```python
# !pip install git+https://github.com/huggingface/diffusers.git
from diffusers import DiffusionPipeline
import scipy

model_id = "harmonai/maestro-150k"
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline = pipeline.to("cuda")

audios = pipeline(audio_length_in_s=4.0).audios

# To save locally
for audio in audios:
    scipy.io.wavfile.write("maestro_test.wav", pipe.unet.sample_rate, audio.transpose())
    
# To dislay in google colab
import IPython.display as ipd
for audio in audios:
    display(ipd.Audio(audio[0, 1:], rate=pipe.unet.sample_rate))
```

## FP16

Faster at a small loss of quality

```python
# !pip install git+https://github.com/huggingface/diffusers.git
from diffusers import DiffusionPipeline
import scipy
import torch

model_id = "harmonai/maestro-150k"
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipeline = pipeline.to("cuda")

audios = pipeline(audio_length_in_s=4.0).audios

# To save locally
for audio in audios:
    scipy.io.wavfile.write("maestro_test.wav", pipe.unet.sample_rate, audio.transpose())
    
# To dislay in google colab
import IPython.display as ipd
for audio in audios:
    display(ipd.Audio(audio[0, 1:], rate=pipe.unet.sample_rate))
```