File size: 1,399 Bytes
adba853
 
 
095e160
adba853
 
 
 
ac2764c
 
 
adba853
ac2764c
 
 
 
 
9ac1f4d
ac2764c
271afe2
ac2764c
4e1ae22
b7b84d2
adba853
4e1ae22
 
 
 
f3a146b
ac2764c
 
 
 
 
 
 
adba853
ac2764c
 
 
 
 
 
9ac1f4d
ac2764c
271afe2
ac2764c
4e1ae22
adba853
 
4e1ae22
 
 
 
f3a146b
ac2764c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
license: mit
tags:
- audio-generation
---

[Dance Diffusion](https://github.com/Harmonai-org/sample-generator) is now available in 🧨 Diffusers.

## FP32

```python
# !pip install diffusers[torch] accelerate scipy
from diffusers import DiffusionPipeline
import scipy

model_id = "harmonai/maestro-150k"
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline = pipeline.to("cuda")

audios = pipeline(audio_length_in_s=4.0).audios

# To save locally
for i, audio in enumerate(audios):
    scipy.io.wavfile.write(f"maestro_test_{i}.wav", pipe.unet.sample_rate, audio.transpose())
    
# To dislay in google colab
import IPython.display as ipd
for audio in audios:
    display(ipd.Audio(audio, rate=pipe.unet.sample_rate))
```

## FP16

Faster at a small loss of quality

```python
# !pip install diffusers[torch] accelerate scipy
from diffusers import DiffusionPipeline
import scipy
import torch

model_id = "harmonai/maestro-150k"
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipeline = pipeline.to("cuda")

audios = pipeline(audio_length_in_s=4.0).audios

# To save locally
for i, audio in enumerate(audios):
    scipy.io.wavfile.write(f"maestro_test_{i}.wav", pipe.unet.sample_rate, audio.transpose())
    
# To dislay in google colab
import IPython.display as ipd
for audio in audios:
    display(ipd.Audio(audio, rate=pipe.unet.sample_rate))
```