happycoding commited on
Commit
57808a3
·
1 Parent(s): e198f62

load and test

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -2.85 +/- 0.80
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -9.93 +/- 2.45
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:60c2856c2be0585d8f759a74200186df5683f651b51f94b574a17f01cc7e969d
3
- size 107988
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8b01a9ce769e14cba5ef797b8e43b883786de87fcca861c04e8e2ae568a3479
3
+ size 106626
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd9d96d61f0>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc_data object at 0x7fd9d96d2360>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -40,7 +40,7 @@
40
  "bounded_above": "[ True True True]",
41
  "_np_random": null
42
  },
43
- "n_envs": 4,
44
  "num_timesteps": 2000000,
45
  "_total_timesteps": 2000000,
46
  "_num_timesteps_at_start": 0,
@@ -53,13 +53,7 @@
53
  ":type:": "<class 'function'>",
54
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
  },
56
- "_last_obs": {
57
- ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtI/ePv6zajpPYxU/tI/ePv6zajpPYxU/tI/ePv6zajpPYxU/tI/ePv6zajpPYxU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAY0qWP0BMvr+ndse/tQDwvtLVU73NXt6+4t2yP4RPk7/1CPc+nOq+v0DgAz64i5Q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC0j94+/rNqOk9jFT9uXc48812aOyuUUjy0j94+/rNqOk9jFT9uXc48812aOyuUUjy0j94+/rNqOk9jFT9uXc48812aOyuUUjy0j94+/rNqOk9jFT9uXc48812aOyuUUjyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[0.43469012 0.00089532 0.5835466 ]\n [0.43469012 0.00089532 0.5835466 ]\n [0.43469012 0.00089532 0.5835466 ]\n [0.43469012 0.00089532 0.5835466 ]]",
60
- "desired_goal": "[[ 1.1741451 -1.486702 -1.5583085 ]\n [-0.4687554 -0.05171759 -0.43431702]\n [ 1.3973963 -1.1508641 0.4824902 ]\n [-1.4915347 0.12878513 1.1605139 ]]",
61
- "observation": "[[0.43469012 0.00089532 0.5835466 0.02519104 0.00471091 0.01285271]\n [0.43469012 0.00089532 0.5835466 0.02519104 0.00471091 0.01285271]\n [0.43469012 0.00089532 0.5835466 0.02519104 0.00471091 0.01285271]\n [0.43469012 0.00089532 0.5835466 0.02519104 0.00471091 0.01285271]]"
62
- },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
65
  ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1d9eb298b0>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f1d9eb21d50>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
40
  "bounded_above": "[ True True True]",
41
  "_np_random": null
42
  },
43
+ "n_envs": 1,
44
  "num_timesteps": 2000000,
45
  "_total_timesteps": 2000000,
46
  "_num_timesteps_at_start": 0,
 
53
  ":type:": "<class 'function'>",
54
  ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
  },
56
+ "_last_obs": null,
 
 
 
 
 
 
57
  "_last_episode_starts": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
  ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
a2c-PandaReachDense-v2/system_info.txt CHANGED
@@ -3,5 +3,5 @@
3
  - Stable-Baselines3: 1.7.0
4
  - PyTorch: 1.13.1+cu116
5
  - GPU Enabled: True
6
- - Numpy: 1.21.6
7
  - Gym: 0.21.0
 
3
  - Stable-Baselines3: 1.7.0
4
  - PyTorch: 1.13.1+cu116
5
  - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
  - Gym: 0.21.0
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd9d96d61f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd9d96d2360>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674551459986176987, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtI/ePv6zajpPYxU/tI/ePv6zajpPYxU/tI/ePv6zajpPYxU/tI/ePv6zajpPYxU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAY0qWP0BMvr+ndse/tQDwvtLVU73NXt6+4t2yP4RPk7/1CPc+nOq+v0DgAz64i5Q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC0j94+/rNqOk9jFT9uXc48812aOyuUUjy0j94+/rNqOk9jFT9uXc48812aOyuUUjy0j94+/rNqOk9jFT9uXc48812aOyuUUjy0j94+/rNqOk9jFT9uXc48812aOyuUUjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43469012 0.00089532 0.5835466 ]\n [0.43469012 0.00089532 0.5835466 ]\n [0.43469012 0.00089532 0.5835466 ]\n [0.43469012 0.00089532 0.5835466 ]]", "desired_goal": "[[ 1.1741451 -1.486702 -1.5583085 ]\n [-0.4687554 -0.05171759 -0.43431702]\n [ 1.3973963 -1.1508641 0.4824902 ]\n [-1.4915347 0.12878513 1.1605139 ]]", "observation": "[[0.43469012 0.00089532 0.5835466 0.02519104 0.00471091 0.01285271]\n [0.43469012 0.00089532 0.5835466 0.02519104 0.00471091 0.01285271]\n [0.43469012 0.00089532 0.5835466 0.02519104 0.00471091 0.01285271]\n [0.43469012 0.00089532 0.5835466 0.02519104 0.00471091 0.01285271]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnPmfPKgVnb2UiSE+r9DKPJ1ys70s4Qw+nX5jPRqG9r17UWU+37sKPrCbCb5QPlA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0195282 -0.07670146 0.15775138]\n [ 0.02475771 -0.08762095 0.13757771]\n [ 0.05554067 -0.12037297 0.22394364]\n [ 0.1354823 -0.13438296 0.2033627 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImBb1Se4wBcCUhpRSlIwBbJRLMowBdJRHQLTwW9s7+1l1fZQoaAZoCWgPQwgrE36pnwcQwJSGlFKUaBVLMmgWR0C08D3Z9NN8dX2UKGgGaAloD0MIKovCLooeA8CUhpRSlGgVSzJoFkdAtPAeHSF493V9lChoBmgJaA9DCMnGgy12ewbAlIaUUpRoFUsyaBZHQLTv/YTj/+91fZQoaAZoCWgPQwhfXoB9dAoSwJSGlFKUaBVLMmgWR0C08NJAQg9vdX2UKGgGaAloD0MImnyzzY0JAMCUhpRSlGgVSzJoFkdAtPC0PNFBp3V9lChoBmgJaA9DCBsN4C2Q0BLAlIaUUpRoFUsyaBZHQLTwlHbypaR1fZQoaAZoCWgPQwhQqRJlb+kPwJSGlFKUaBVLMmgWR0C08HPRJEpidX2UKGgGaAloD0MIoMN8eQF2AcCUhpRSlGgVSzJoFkdAtPFINb1RL3V9lChoBmgJaA9DCIFZoUj3UwXAlIaUUpRoFUsyaBZHQLTxKj3Ehq11fZQoaAZoCWgPQwi++KI9XsgAwJSGlFKUaBVLMmgWR0C08Qp+x4Y8dX2UKGgGaAloD0MIK4VALnEEBcCUhpRSlGgVSzJoFkdAtPDp+BpYcXV9lChoBmgJaA9DCAPS/gdYqw7AlIaUUpRoFUsyaBZHQLTxx0I1LrZ1fZQoaAZoCWgPQwium1JeKxEQwJSGlFKUaBVLMmgWR0C08ak5+6RRdX2UKGgGaAloD0MIUdobfGFSCcCUhpRSlGgVSzJoFkdAtPGJf7aZhXV9lChoBmgJaA9DCP7UeOkmcQ7AlIaUUpRoFUsyaBZHQLTxaN9ph4N1fZQoaAZoCWgPQwgi/8wgPrAMwJSGlFKUaBVLMmgWR0C08jYpc5bRdX2UKGgGaAloD0MILudSXFXWAsCUhpRSlGgVSzJoFkdAtPIYMhHLBHV9lChoBmgJaA9DCHPxtz1B4vW/lIaUUpRoFUsyaBZHQLTx+Hck+ot1fZQoaAZoCWgPQwgawjHLnqQHwJSGlFKUaBVLMmgWR0C08dfxH5JsdX2UKGgGaAloD0MIPUSjO4j9CsCUhpRSlGgVSzJoFkdAtPKtRFZxJnV9lChoBmgJaA9DCFTJAFDF7QXAlIaUUpRoFUsyaBZHQLTyj0QbuMN1fZQoaAZoCWgPQwjiAzv+CyQZwJSGlFKUaBVLMmgWR0C08m95t3wDdX2UKGgGaAloD0MI58JIL2r3/b+UhpRSlGgVSzJoFkdAtPJOzposZ3V9lChoBmgJaA9DCMxG5/wUZwfAlIaUUpRoFUsyaBZHQLTzICOmzjZ1fZQoaAZoCWgPQwg8UKc8utH+v5SGlFKUaBVLMmgWR0C08wItxuKodX2UKGgGaAloD0MIzQUujzXj+7+UhpRSlGgVSzJoFkdAtPLibwz+FXV9lChoBmgJaA9DCF68H7dfvvS/lIaUUpRoFUsyaBZHQLTywel9Brx1fZQoaAZoCWgPQwgXgbG+gdkQwJSGlFKUaBVLMmgWR0C085GXLNfPdX2UKGgGaAloD0MICVOUS+N3AcCUhpRSlGgVSzJoFkdAtPNzisGPgnV9lChoBmgJaA9DCFDhCFIp9g/AlIaUUpRoFUsyaBZHQLTzU8e0Xxh1fZQoaAZoCWgPQwg6kWCqmfX5v5SGlFKUaBVLMmgWR0C08zMju8brdX2UKGgGaAloD0MI0jQomgfQAsCUhpRSlGgVSzJoFkdAtPQF5cC5mXV9lChoBmgJaA9DCAWKWMSwExHAlIaUUpRoFUsyaBZHQLTz5/20zCV1fZQoaAZoCWgPQwjK3lLOF5sAwJSGlFKUaBVLMmgWR0C088hB7eEadX2UKGgGaAloD0MIPNhit896EsCUhpRSlGgVSzJoFkdAtPOnzND+i3V9lChoBmgJaA9DCPDbEOM1zwnAlIaUUpRoFUsyaBZHQLT0g6mfoRt1fZQoaAZoCWgPQwielbTiGyoCwJSGlFKUaBVLMmgWR0C09GWkWRA9dX2UKGgGaAloD0MIDkqYafuXEsCUhpRSlGgVSzJoFkdAtPRF4B3iaXV9lChoBmgJaA9DCLYvoBfuPAzAlIaUUpRoFUsyaBZHQLT0JUcGTs91fZQoaAZoCWgPQwgaw5ygTa4BwJSGlFKUaBVLMmgWR0C09PLkfcN6dX2UKGgGaAloD0MI963WicsRA8CUhpRSlGgVSzJoFkdAtPTU1sLv1HV9lChoBmgJaA9DCLPuHwvRgRLAlIaUUpRoFUsyaBZHQLT0tQdjoZB1fZQoaAZoCWgPQwgQ6EzaVH0BwJSGlFKUaBVLMmgWR0C09JRmCiAUdX2UKGgGaAloD0MI+OKL9ngh9L+UhpRSlGgVSzJoFkdAtPVkW56MSHV9lChoBmgJaA9DCPX0EfjDLwXAlIaUUpRoFUsyaBZHQLT1RkjX4CZ1fZQoaAZoCWgPQwhMwoU8gvsAwJSGlFKUaBVLMmgWR0C09SZyEL6UdX2UKGgGaAloD0MILskBu5ocD8CUhpRSlGgVSzJoFkdAtPUF1uBMBnV9lChoBmgJaA9DCFzknq7ueADAlIaUUpRoFUsyaBZHQLT14C7K7qZ1fZQoaAZoCWgPQwii0LLuH8sEwJSGlFKUaBVLMmgWR0C09cIxYaHcdX2UKGgGaAloD0MI5Pc2/dmP/r+UhpRSlGgVSzJoFkdAtPWiaUiY9nV9lChoBmgJaA9DCICcMGE0ywnAlIaUUpRoFUsyaBZHQLT1gcW0qpd1fZQoaAZoCWgPQwhVbMzriMMAwJSGlFKUaBVLMmgWR0C09lK3mV7hdX2UKGgGaAloD0MIy4Y1lUVBAcCUhpRSlGgVSzJoFkdAtPY0uh9LH3V9lChoBmgJaA9DCMoV3uUiHhLAlIaUUpRoFUsyaBZHQLT2FSpBHCp1fZQoaAZoCWgPQwjVk/lH36T5v5SGlFKUaBVLMmgWR0C09fSvgWJrdX2UKGgGaAloD0MIyxEykGf3C8CUhpRSlGgVSzJoFkdAtPbOrwOOKnV9lChoBmgJaA9DCK6BrRIsfhHAlIaUUpRoFUsyaBZHQLT2sO5avA51fZQoaAZoCWgPQwgaqIx/n1EUwJSGlFKUaBVLMmgWR0C09pE0WM0hdX2UKGgGaAloD0MIgGJkyRzL+L+UhpRSlGgVSzJoFkdAtPZwsZpBX3V9lChoBmgJaA9DCBhd3hyuNRHAlIaUUpRoFUsyaBZHQLT3VdxAB1d1fZQoaAZoCWgPQwgkYkok0Qv5v5SGlFKUaBVLMmgWR0C09zftx+8XdX2UKGgGaAloD0MI0opvKHx2/b+UhpRSlGgVSzJoFkdAtPcYKWszVXV9lChoBmgJaA9DCFd3LLZJxQLAlIaUUpRoFUsyaBZHQLT295BC2MN1fZQoaAZoCWgPQwg2kgThCugAwJSGlFKUaBVLMmgWR0C099TeXRgJdX2UKGgGaAloD0MIMnTsoBI3E8CUhpRSlGgVSzJoFkdAtPe2+SKWLXV9lChoBmgJaA9DCHE7NCxGfQfAlIaUUpRoFUsyaBZHQLT3l1QIldF1fZQoaAZoCWgPQwj4NCcvMgEAwJSGlFKUaBVLMmgWR0C093bDl5nldX2UKGgGaAloD0MIA+rNqPlqBcCUhpRSlGgVSzJoFkdAtPhGwosqa3V9lChoBmgJaA9DCLbaw14oIP2/lIaUUpRoFUsyaBZHQLT4KLKFIup1fZQoaAZoCWgPQwjC+dSxSkkNwJSGlFKUaBVLMmgWR0C0+AjZDiOvdX2UKGgGaAloD0MIIxPwaySJAsCUhpRSlGgVSzJoFkdAtPfoNgBtDXV9lChoBmgJaA9DCCgtXFZhs/q/lIaUUpRoFUsyaBZHQLT4t6l+Eyt1fZQoaAZoCWgPQwhMjGX6JSIFwJSGlFKUaBVLMmgWR0C0+JnGS6lMdX2UKGgGaAloD0MI1cvvNJlRD8CUhpRSlGgVSzJoFkdAtPh59F4LTnV9lChoBmgJaA9DCMr+eRowyPu/lIaUUpRoFUsyaBZHQLT4WUNKAax1fZQoaAZoCWgPQwi/K4L/reQGwJSGlFKUaBVLMmgWR0C0+SiVKPGRdX2UKGgGaAloD0MIhc0AF2QrDsCUhpRSlGgVSzJoFkdAtPkKlLvkR3V9lChoBmgJaA9DCM9m1edqKwbAlIaUUpRoFUsyaBZHQLT46taY/ml1fZQoaAZoCWgPQwjCE3r9SXz+v5SGlFKUaBVLMmgWR0C0+MoqLCN0dX2UKGgGaAloD0MIsWzmkNRiCMCUhpRSlGgVSzJoFkdAtPme2a2F4HV9lChoBmgJaA9DCANDVrd6Dvy/lIaUUpRoFUsyaBZHQLT5gO2RaHN1fZQoaAZoCWgPQwgWpYRgVc0SwJSGlFKUaBVLMmgWR0C0+WElme18dX2UKGgGaAloD0MIJxb4im69BsCUhpRSlGgVSzJoFkdAtPlAlXzUZ3V9lChoBmgJaA9DCKW/l8KDpvu/lIaUUpRoFUsyaBZHQLT6FF10T111fZQoaAZoCWgPQwimKm1xje8DwJSGlFKUaBVLMmgWR0C0+fZWvKU3dX2UKGgGaAloD0MIY2Adxw91FsCUhpRSlGgVSzJoFkdAtPnWoIfKZHV9lChoBmgJaA9DCPiKbr2m5xDAlIaUUpRoFUsyaBZHQLT5tgxJul51fZQoaAZoCWgPQwi7DP/pBorwv5SGlFKUaBVLMmgWR0C0+pieI2wWdX2UKGgGaAloD0MIyo0iaw2lEcCUhpRSlGgVSzJoFkdAtPp6zt1IRXV9lChoBmgJaA9DCCsWvymsFPS/lIaUUpRoFUsyaBZHQLT6WwLVnVZ1fZQoaAZoCWgPQwjDgCVXsbgEwJSGlFKUaBVLMmgWR0C0+jphWo3rdX2UKGgGaAloD0MIroODvYmhBMCUhpRSlGgVSzJoFkdAtPsWjnFHa3V9lChoBmgJaA9DCCuFQC5xRAbAlIaUUpRoFUsyaBZHQLT6+I7Njb11fZQoaAZoCWgPQwgLl1XYDLD2v5SGlFKUaBVLMmgWR0C0+tjGT9sKdX2UKGgGaAloD0MIAWpq2Vqf/L+UhpRSlGgVSzJoFkdAtPq4MspXqHV9lChoBmgJaA9DCEZhF0UP/APAlIaUUpRoFUsyaBZHQLT7kCVbA1x1fZQoaAZoCWgPQwik42pkV5oIwJSGlFKUaBVLMmgWR0C0+3IuPFNtdX2UKGgGaAloD0MIoMA7+fS4B8CUhpRSlGgVSzJoFkdAtPtSZfD1oXV9lChoBmgJaA9DCAoTRrOybRTAlIaUUpRoFUsyaBZHQLT7MbQkX1t1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1d9eb298b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1d9eb21d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674551459986176987, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAnPmfPKgVnb2UiSE+r9DKPJ1ys70s4Qw+nX5jPRqG9r17UWU+37sKPrCbCb5QPlA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0195282 -0.07670146 0.15775138]\n [ 0.02475771 -0.08762095 0.13757771]\n [ 0.05554067 -0.12037297 0.22394364]\n [ 0.1354823 -0.13438296 0.2033627 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImBb1Se4wBcCUhpRSlIwBbJRLMowBdJRHQLTwW9s7+1l1fZQoaAZoCWgPQwgrE36pnwcQwJSGlFKUaBVLMmgWR0C08D3Z9NN8dX2UKGgGaAloD0MIKovCLooeA8CUhpRSlGgVSzJoFkdAtPAeHSF493V9lChoBmgJaA9DCMnGgy12ewbAlIaUUpRoFUsyaBZHQLTv/YTj/+91fZQoaAZoCWgPQwhfXoB9dAoSwJSGlFKUaBVLMmgWR0C08NJAQg9vdX2UKGgGaAloD0MImnyzzY0JAMCUhpRSlGgVSzJoFkdAtPC0PNFBp3V9lChoBmgJaA9DCBsN4C2Q0BLAlIaUUpRoFUsyaBZHQLTwlHbypaR1fZQoaAZoCWgPQwhQqRJlb+kPwJSGlFKUaBVLMmgWR0C08HPRJEpidX2UKGgGaAloD0MIoMN8eQF2AcCUhpRSlGgVSzJoFkdAtPFINb1RL3V9lChoBmgJaA9DCIFZoUj3UwXAlIaUUpRoFUsyaBZHQLTxKj3Ehq11fZQoaAZoCWgPQwi++KI9XsgAwJSGlFKUaBVLMmgWR0C08Qp+x4Y8dX2UKGgGaAloD0MIK4VALnEEBcCUhpRSlGgVSzJoFkdAtPDp+BpYcXV9lChoBmgJaA9DCAPS/gdYqw7AlIaUUpRoFUsyaBZHQLTxx0I1LrZ1fZQoaAZoCWgPQwium1JeKxEQwJSGlFKUaBVLMmgWR0C08ak5+6RRdX2UKGgGaAloD0MIUdobfGFSCcCUhpRSlGgVSzJoFkdAtPGJf7aZhXV9lChoBmgJaA9DCP7UeOkmcQ7AlIaUUpRoFUsyaBZHQLTxaN9ph4N1fZQoaAZoCWgPQwgi/8wgPrAMwJSGlFKUaBVLMmgWR0C08jYpc5bRdX2UKGgGaAloD0MILudSXFXWAsCUhpRSlGgVSzJoFkdAtPIYMhHLBHV9lChoBmgJaA9DCHPxtz1B4vW/lIaUUpRoFUsyaBZHQLTx+Hck+ot1fZQoaAZoCWgPQwgawjHLnqQHwJSGlFKUaBVLMmgWR0C08dfxH5JsdX2UKGgGaAloD0MIPUSjO4j9CsCUhpRSlGgVSzJoFkdAtPKtRFZxJnV9lChoBmgJaA9DCFTJAFDF7QXAlIaUUpRoFUsyaBZHQLTyj0QbuMN1fZQoaAZoCWgPQwjiAzv+CyQZwJSGlFKUaBVLMmgWR0C08m95t3wDdX2UKGgGaAloD0MI58JIL2r3/b+UhpRSlGgVSzJoFkdAtPJOzposZ3V9lChoBmgJaA9DCMxG5/wUZwfAlIaUUpRoFUsyaBZHQLTzICOmzjZ1fZQoaAZoCWgPQwg8UKc8utH+v5SGlFKUaBVLMmgWR0C08wItxuKodX2UKGgGaAloD0MIzQUujzXj+7+UhpRSlGgVSzJoFkdAtPLibwz+FXV9lChoBmgJaA9DCF68H7dfvvS/lIaUUpRoFUsyaBZHQLTywel9Brx1fZQoaAZoCWgPQwgXgbG+gdkQwJSGlFKUaBVLMmgWR0C085GXLNfPdX2UKGgGaAloD0MICVOUS+N3AcCUhpRSlGgVSzJoFkdAtPNzisGPgnV9lChoBmgJaA9DCFDhCFIp9g/AlIaUUpRoFUsyaBZHQLTzU8e0Xxh1fZQoaAZoCWgPQwg6kWCqmfX5v5SGlFKUaBVLMmgWR0C08zMju8brdX2UKGgGaAloD0MI0jQomgfQAsCUhpRSlGgVSzJoFkdAtPQF5cC5mXV9lChoBmgJaA9DCAWKWMSwExHAlIaUUpRoFUsyaBZHQLTz5/20zCV1fZQoaAZoCWgPQwjK3lLOF5sAwJSGlFKUaBVLMmgWR0C088hB7eEadX2UKGgGaAloD0MIPNhit896EsCUhpRSlGgVSzJoFkdAtPOnzND+i3V9lChoBmgJaA9DCPDbEOM1zwnAlIaUUpRoFUsyaBZHQLT0g6mfoRt1fZQoaAZoCWgPQwielbTiGyoCwJSGlFKUaBVLMmgWR0C09GWkWRA9dX2UKGgGaAloD0MIDkqYafuXEsCUhpRSlGgVSzJoFkdAtPRF4B3iaXV9lChoBmgJaA9DCLYvoBfuPAzAlIaUUpRoFUsyaBZHQLT0JUcGTs91fZQoaAZoCWgPQwgaw5ygTa4BwJSGlFKUaBVLMmgWR0C09PLkfcN6dX2UKGgGaAloD0MI963WicsRA8CUhpRSlGgVSzJoFkdAtPTU1sLv1HV9lChoBmgJaA9DCLPuHwvRgRLAlIaUUpRoFUsyaBZHQLT0tQdjoZB1fZQoaAZoCWgPQwgQ6EzaVH0BwJSGlFKUaBVLMmgWR0C09JRmCiAUdX2UKGgGaAloD0MI+OKL9ngh9L+UhpRSlGgVSzJoFkdAtPVkW56MSHV9lChoBmgJaA9DCPX0EfjDLwXAlIaUUpRoFUsyaBZHQLT1RkjX4CZ1fZQoaAZoCWgPQwhMwoU8gvsAwJSGlFKUaBVLMmgWR0C09SZyEL6UdX2UKGgGaAloD0MILskBu5ocD8CUhpRSlGgVSzJoFkdAtPUF1uBMBnV9lChoBmgJaA9DCFzknq7ueADAlIaUUpRoFUsyaBZHQLT14C7K7qZ1fZQoaAZoCWgPQwii0LLuH8sEwJSGlFKUaBVLMmgWR0C09cIxYaHcdX2UKGgGaAloD0MI5Pc2/dmP/r+UhpRSlGgVSzJoFkdAtPWiaUiY9nV9lChoBmgJaA9DCICcMGE0ywnAlIaUUpRoFUsyaBZHQLT1gcW0qpd1fZQoaAZoCWgPQwhVbMzriMMAwJSGlFKUaBVLMmgWR0C09lK3mV7hdX2UKGgGaAloD0MIy4Y1lUVBAcCUhpRSlGgVSzJoFkdAtPY0uh9LH3V9lChoBmgJaA9DCMoV3uUiHhLAlIaUUpRoFUsyaBZHQLT2FSpBHCp1fZQoaAZoCWgPQwjVk/lH36T5v5SGlFKUaBVLMmgWR0C09fSvgWJrdX2UKGgGaAloD0MIyxEykGf3C8CUhpRSlGgVSzJoFkdAtPbOrwOOKnV9lChoBmgJaA9DCK6BrRIsfhHAlIaUUpRoFUsyaBZHQLT2sO5avA51fZQoaAZoCWgPQwgaqIx/n1EUwJSGlFKUaBVLMmgWR0C09pE0WM0hdX2UKGgGaAloD0MIgGJkyRzL+L+UhpRSlGgVSzJoFkdAtPZwsZpBX3V9lChoBmgJaA9DCBhd3hyuNRHAlIaUUpRoFUsyaBZHQLT3VdxAB1d1fZQoaAZoCWgPQwgkYkok0Qv5v5SGlFKUaBVLMmgWR0C09zftx+8XdX2UKGgGaAloD0MI0opvKHx2/b+UhpRSlGgVSzJoFkdAtPcYKWszVXV9lChoBmgJaA9DCFd3LLZJxQLAlIaUUpRoFUsyaBZHQLT295BC2MN1fZQoaAZoCWgPQwg2kgThCugAwJSGlFKUaBVLMmgWR0C099TeXRgJdX2UKGgGaAloD0MIMnTsoBI3E8CUhpRSlGgVSzJoFkdAtPe2+SKWLXV9lChoBmgJaA9DCHE7NCxGfQfAlIaUUpRoFUsyaBZHQLT3l1QIldF1fZQoaAZoCWgPQwj4NCcvMgEAwJSGlFKUaBVLMmgWR0C093bDl5nldX2UKGgGaAloD0MIA+rNqPlqBcCUhpRSlGgVSzJoFkdAtPhGwosqa3V9lChoBmgJaA9DCLbaw14oIP2/lIaUUpRoFUsyaBZHQLT4KLKFIup1fZQoaAZoCWgPQwjC+dSxSkkNwJSGlFKUaBVLMmgWR0C0+AjZDiOvdX2UKGgGaAloD0MIIxPwaySJAsCUhpRSlGgVSzJoFkdAtPfoNgBtDXV9lChoBmgJaA9DCCgtXFZhs/q/lIaUUpRoFUsyaBZHQLT4t6l+Eyt1fZQoaAZoCWgPQwhMjGX6JSIFwJSGlFKUaBVLMmgWR0C0+JnGS6lMdX2UKGgGaAloD0MI1cvvNJlRD8CUhpRSlGgVSzJoFkdAtPh59F4LTnV9lChoBmgJaA9DCMr+eRowyPu/lIaUUpRoFUsyaBZHQLT4WUNKAax1fZQoaAZoCWgPQwi/K4L/reQGwJSGlFKUaBVLMmgWR0C0+SiVKPGRdX2UKGgGaAloD0MIhc0AF2QrDsCUhpRSlGgVSzJoFkdAtPkKlLvkR3V9lChoBmgJaA9DCM9m1edqKwbAlIaUUpRoFUsyaBZHQLT46taY/ml1fZQoaAZoCWgPQwjCE3r9SXz+v5SGlFKUaBVLMmgWR0C0+MoqLCN0dX2UKGgGaAloD0MIsWzmkNRiCMCUhpRSlGgVSzJoFkdAtPme2a2F4HV9lChoBmgJaA9DCANDVrd6Dvy/lIaUUpRoFUsyaBZHQLT5gO2RaHN1fZQoaAZoCWgPQwgWpYRgVc0SwJSGlFKUaBVLMmgWR0C0+WElme18dX2UKGgGaAloD0MIJxb4im69BsCUhpRSlGgVSzJoFkdAtPlAlXzUZ3V9lChoBmgJaA9DCKW/l8KDpvu/lIaUUpRoFUsyaBZHQLT6FF10T111fZQoaAZoCWgPQwimKm1xje8DwJSGlFKUaBVLMmgWR0C0+fZWvKU3dX2UKGgGaAloD0MIY2Adxw91FsCUhpRSlGgVSzJoFkdAtPnWoIfKZHV9lChoBmgJaA9DCPiKbr2m5xDAlIaUUpRoFUsyaBZHQLT5tgxJul51fZQoaAZoCWgPQwi7DP/pBorwv5SGlFKUaBVLMmgWR0C0+pieI2wWdX2UKGgGaAloD0MIyo0iaw2lEcCUhpRSlGgVSzJoFkdAtPp6zt1IRXV9lChoBmgJaA9DCCsWvymsFPS/lIaUUpRoFUsyaBZHQLT6WwLVnVZ1fZQoaAZoCWgPQwjDgCVXsbgEwJSGlFKUaBVLMmgWR0C0+jphWo3rdX2UKGgGaAloD0MIroODvYmhBMCUhpRSlGgVSzJoFkdAtPsWjnFHa3V9lChoBmgJaA9DCCuFQC5xRAbAlIaUUpRoFUsyaBZHQLT6+I7Njb11fZQoaAZoCWgPQwgLl1XYDLD2v5SGlFKUaBVLMmgWR0C0+tjGT9sKdX2UKGgGaAloD0MIAWpq2Vqf/L+UhpRSlGgVSzJoFkdAtPq4MspXqHV9lChoBmgJaA9DCEZhF0UP/APAlIaUUpRoFUsyaBZHQLT7kCVbA1x1fZQoaAZoCWgPQwik42pkV5oIwJSGlFKUaBVLMmgWR0C0+3IuPFNtdX2UKGgGaAloD0MIoMA7+fS4B8CUhpRSlGgVSzJoFkdAtPtSZfD1oXV9lChoBmgJaA9DCAoTRrOybRTAlIaUUpRoFUsyaBZHQLT7MbQkX1t1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -2.8522533144336193, "std_reward": 0.7990880412931474, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T10:40:31.034014"}
 
1
+ {"mean_reward": -9.931825373321772, "std_reward": 2.4522003669873804, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-22T22:20:18.208456"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:858128edbe1ce74bd384246d4139379c89ec06c0edab4fffe04eb8eaa9990584
3
- size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6538c6711c30c1869bf6a9b826c31f7fadfabef4d948798ab6529fb26190ef8
3
+ size 3043