hannahbillo
commited on
Commit
·
a8191a8
1
Parent(s):
c146ace
update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -72,20 +72,22 @@ The following hyperparameters were used during training:
|
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
-
- num_epochs:
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| No log | 1.0 | 439 | 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
|
|
|
|
84 |
|
85 |
|
86 |
### Framework versions
|
87 |
|
88 |
- Transformers 4.28.1
|
89 |
- Pytorch 2.0.0+cu118
|
90 |
-
- Datasets 2.
|
91 |
- Tokenizers 0.13.3
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.9264624571491762
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.9372413021590782
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.9318207095984874
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9840024147298521
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.0621
|
47 |
+
- Precision: 0.9265
|
48 |
+
- Recall: 0.9372
|
49 |
+
- F1: 0.9318
|
50 |
+
- Accuracy: 0.9840
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 5
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 439 | 0.0751 | 0.8976 | 0.9103 | 0.9039 | 0.9789 |
|
82 |
+
| 0.219 | 2.0 | 878 | 0.0626 | 0.9130 | 0.9284 | 0.9206 | 0.9817 |
|
83 |
+
| 0.0558 | 3.0 | 1317 | 0.0623 | 0.9195 | 0.9332 | 0.9263 | 0.9826 |
|
84 |
+
| 0.0321 | 4.0 | 1756 | 0.0610 | 0.9251 | 0.9359 | 0.9305 | 0.9835 |
|
85 |
+
| 0.0228 | 5.0 | 2195 | 0.0621 | 0.9265 | 0.9372 | 0.9318 | 0.9840 |
|
86 |
|
87 |
|
88 |
### Framework versions
|
89 |
|
90 |
- Transformers 4.28.1
|
91 |
- Pytorch 2.0.0+cu118
|
92 |
+
- Datasets 2.12.0
|
93 |
- Tokenizers 0.13.3
|