hannahbillo commited on
Commit
a8191a8
·
1 Parent(s): c146ace

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -14
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.9164185687506892
28
  - name: Recall
29
  type: recall
30
- value: 0.9297460566058843
31
  - name: F1
32
  type: f1
33
- value: 0.9230342070191025
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9818895261092665
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0638
47
- - Precision: 0.9164
48
- - Recall: 0.9297
49
- - F1: 0.9230
50
- - Accuracy: 0.9819
51
 
52
  ## Model description
53
 
@@ -72,20 +72,22 @@ The following hyperparameters were used during training:
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
75
- - num_epochs: 3
76
 
77
  ### Training results
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | No log | 1.0 | 439 | 0.0792 | 0.8879 | 0.9023 | 0.8951 | 0.9774 |
82
- | 0.2186 | 2.0 | 878 | 0.0635 | 0.9119 | 0.9278 | 0.9198 | 0.9817 |
83
- | 0.0594 | 3.0 | 1317 | 0.0638 | 0.9164 | 0.9297 | 0.9230 | 0.9819 |
 
 
84
 
85
 
86
  ### Framework versions
87
 
88
  - Transformers 4.28.1
89
  - Pytorch 2.0.0+cu118
90
- - Datasets 2.11.0
91
  - Tokenizers 0.13.3
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.9264624571491762
28
  - name: Recall
29
  type: recall
30
+ value: 0.9372413021590782
31
  - name: F1
32
  type: f1
33
+ value: 0.9318207095984874
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9840024147298521
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.0621
47
+ - Precision: 0.9265
48
+ - Recall: 0.9372
49
+ - F1: 0.9318
50
+ - Accuracy: 0.9840
51
 
52
  ## Model description
53
 
 
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
75
+ - num_epochs: 5
76
 
77
  ### Training results
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 439 | 0.0751 | 0.8976 | 0.9103 | 0.9039 | 0.9789 |
82
+ | 0.219 | 2.0 | 878 | 0.0626 | 0.9130 | 0.9284 | 0.9206 | 0.9817 |
83
+ | 0.0558 | 3.0 | 1317 | 0.0623 | 0.9195 | 0.9332 | 0.9263 | 0.9826 |
84
+ | 0.0321 | 4.0 | 1756 | 0.0610 | 0.9251 | 0.9359 | 0.9305 | 0.9835 |
85
+ | 0.0228 | 5.0 | 2195 | 0.0621 | 0.9265 | 0.9372 | 0.9318 | 0.9840 |
86
 
87
 
88
  ### Framework versions
89
 
90
  - Transformers 4.28.1
91
  - Pytorch 2.0.0+cu118
92
+ - Datasets 2.12.0
93
  - Tokenizers 0.13.3