--- license: mit tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: Kemenkeu-Sentiment-Classifier results: - task: name: Text Classification type: text-classification metrics: - name: Accuracy type: accuracy value: 0.66 - name: F1 type: f1 value: 0.6368 language: - id pipeline_tag: text-classification widget: - text: sudah beli makan buat sahur? example_title: "contoh tidak relevan" - text: Mengawal APBN, Indonesia Maju example_title: "contoh kalimat" --- # Kemenkeu-Sentiment-Classifier This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the MoF-DAC Mini Challenge#1 dataset. It achieves the following results on the evaluation set: - Accuracy: 0.66 - F1: 0.6368 Leaderboard score: - Public score: 0.63733 - Private score: 0.65733 ## Model description & limitations - This model can be used to classify text with four possible outputs [netral, tdk-relevan, negatif, and positif] - only for specific cases related to the Ministry Of Finance Indonesia ## How to use You can use this model directly with a pipeline ```python pretrained_name = "hanifnoerr/Kemenkeu-Sentiment-Classifier" class_model = pipeline(tokenizer=pretrained_name, model=pretrained_name) test_data = "Mengawal APBN, Indonesia Maju" class_model(test_data) ``` ## Training and evaluation data The following hyperparameters were used during training: - learning_rate: 1e-05 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0131 | 1.0 | 500 | 0.8590 | 0.644 | 0.5964 | | 0.7133 | 2.0 | 1000 | 0.8639 | 0.63 | 0.5924 | | 0.5261 | 3.0 | 1500 | 0.9002 | 0.66 | 0.6368 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3