Update README.md
Browse files
README.md
CHANGED
@@ -1,10 +1,40 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
-
|
5 |
The model takes a news article and predicts if it true or fake.
|
6 |
-
The format should be:
|
7 |
|
8 |
```
|
9 |
<title> TITLE HERE <content> CONTENT HERE <end>
|
10 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
## Overview
|
5 |
The model takes a news article and predicts if it true or fake.
|
6 |
+
The format of the input should be:
|
7 |
|
8 |
```
|
9 |
<title> TITLE HERE <content> CONTENT HERE <end>
|
10 |
```
|
11 |
+
|
12 |
+
## Using this model in your code:
|
13 |
+
To use this model, first download it from the hugginface website:
|
14 |
+
```python
|
15 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
16 |
+
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("hamzab/roberta-fake-news-classification")
|
18 |
+
|
19 |
+
model = AutoModelForSequenceClassification.from_pretrained("hamzab/roberta-fake-news-classification")
|
20 |
+
```
|
21 |
+
|
22 |
+
Then, make a prediction like follows:
|
23 |
+
```python
|
24 |
+
import torch
|
25 |
+
def predict_fake(title,text):
|
26 |
+
input_str = "<title>" + title + "<content>" + text + "<end>"
|
27 |
+
input_ids = tokenizer.encode_plus(input_str, max_length=512, padding="max_length", truncation=True, return_tensors="pt")
|
28 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
29 |
+
model.to(device)
|
30 |
+
with torch.no_grad():
|
31 |
+
output = model(input_ids["input_ids"].to(device), attention_mask=input_ids["attention_mask"].to(device))
|
32 |
+
return dict(zip(["Fake","Real"], [x.item() for x in list(torch.nn.Softmax()(output.logits)[0])] ))
|
33 |
+
|
34 |
+
print(predict_fake(<HEADLINE-HERE>,<CONTENT-HERE>))
|
35 |
+
```
|
36 |
+
You can also use Gradio to test the model on real-time:
|
37 |
+
```python
|
38 |
+
import gradio as gr
|
39 |
+
iface = gr.Interface(fn=predict_fake, inputs=[gr.inputs.Textbox(lines=1,label="headline"),gr.inputs.Textbox(lines=6,label="content")], outputs="label").launch(share=True)
|
40 |
+
```
|