File size: 2,486 Bytes
ccce0df 87679cd ccce0df 019efc6 ccce0df 30c1cf5 ccce0df 87679cd ccce0df 87679cd ccce0df 87679cd ccce0df 87679cd ccce0df cf3f977 ccce0df aba922f ccce0df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
---
license: apache-2.0
---
# AuthentiVision π
<div align="center">
<img src="assets/img_1.jpg" alt="Logo" width="300"/>
**State-of-the-art Face Authentication Model for Detecting AI-Generated Images**
[Github](https://github.com/TimeLabHub/AuthentiVision) | [Data](https://huggingface.co/datasets/haijian06/face-auth-dataset) | [Demo](https://huggingface.co/spaces/haijian06/TrueFace) | [Tech Blog](https://timelabhub.github.io/)
</div>
</div>
## π― Real vs. AI-Generated Face Comparison
<div align="center">
<table>
<tr>
<td><b>Real Face</b></td>
<td><b>AI-Generated Face</b></td>
</tr>
<tr>
<td>
<img src="assets/real_face.jpg" alt="Real Face" width="200"/>
</td>
<td>
<img src="assets/ai_face.jpg" alt="AI-Generated Face" width="200"/>
</td>
</tr>
<tr>
<td>
<img src="assets/real_face_2.jpg" alt="Real Face" width="200"/>
</td>
<td>
<img src="assets/ai_face_2.jpg" alt="AI-Generated Face" width="200"/>
</td>
</tr>
</table>
</div>
## π Features
- High accuracy in distinguishing real faces from AI-generated ones
- Multiple feature extraction techniques for robust detection
- Easy-to-use API for quick integration
- Lightweight and efficient inference
- Comprehensive documentation and examples
## π Quick Start
```bash
git clone https://github.com/TimeLabHub/AuthentiVision.git
cd AuthentiVision
pip install -r requirements.txt
```
```python
from authentivision import AuthentiVision
# Initialize detector
detector = AuthentiVision()
# Make prediction
label, confidence = detector.predict("path_to_image.jpg")
print(f"Prediction: {label} (Confidence: {confidence:.2f})")
```
## π Documentation
For detailed documentation, please visit our [tech blog](https://timelabhub.github.io/).
## π― Use Cases(Coming soon)
- Identity verification systems
- Social media content moderation
- Digital forensics
- Security applications
## π License
This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.
## π Acknowledgments
- Thanks to all contributors and researchers in the field
- Special thanks to the open-source community
## π Citation
If you use AuthentiVision in your research or project, please cite our technical blog
```bibtex
@online{authentivision2024,
title={AuthentiVision: Finding Yourself in the Real World},
author={Haijian Wang and Zhangbei Ding and Yefan Niu and Xiaoming Zhang},
year={2024},
url={https://timelabhub.github.io/},
note={Medium blog post}
}
|