File size: 2,487 Bytes
ccce0df
 
 
87679cd
ccce0df
 
 
 
 
 
 
019efc6
ccce0df
30c1cf5
ccce0df
 
 
 
 
 
 
 
 
 
 
 
 
 
87679cd
ccce0df
 
 
 
 
 
 
87679cd
ccce0df
 
 
 
 
 
 
87679cd
ccce0df
 
 
 
 
 
 
 
 
 
 
87679cd
ccce0df
cf3f977
ccce0df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: apache-2.0
---

# AuthentiVision πŸ”

<div align="center">

<img src="assets/img_1.jpg" alt="Logo" width="300"/>


**State-of-the-art Face Authentication Model for Detecting AI-Generated Images**

[Github](https://github.com/TimeLabHub/AuthentiVision) | [Data](https://huggingface.co/datasets/haijian06/face-auth-dataset) | [Demo](https://huggingface.co/spaces/haijian06/TrueFace) | [Tech Blog](https://timelabhub.github.io/)

</div>
</div>

## 🎯 Real vs. AI-Generated Face Comparison

<div align="center">
<table>
<tr>
<td><b>Real Face</b></td>
<td><b>AI-Generated Face</b></td>
</tr>
<tr>
<td>
<img src="assets/real_face.jpg" alt="Real Face" width="200"/>
</td>
<td>
<img src="assets/ai_face.jpg" alt="AI-Generated Face" width="200"/>
</td>
</tr>
<tr>
<td>
<img src="assets/real_face_2.jpg" alt="Real Face" width="200"/>
</td>
<td>
<img src="assets/ai_face_2.jpg" alt="AI-Generated Face" width="200"/>
</td>
</tr>
</table>
</div>

## 🌟 Features

- High accuracy in distinguishing real faces from AI-generated ones
- Multiple feature extraction techniques for robust detection
- Easy-to-use API for quick integration
- Lightweight and efficient inference
- Comprehensive documentation and examples

## πŸš€ Quick Start

```bash
git clone https://github.com/TimeLabHub/AuthentiVision.git
cd AuthentiVision
pip install -r requirements.txt
```

```python
from authentivision import AuthentiVision

# Initialize detector
detector = AuthentiVision()

# Make prediction
label, confidence = detector.predict("path_to_image.jpg")
print(f"Prediction: {label} (Confidence: {confidence:.2f})")
```


## πŸ“š Documentation

For detailed documentation, please visit our [tech blog](https://timelabhub.github.io/).

## 🎯 Use Cases(Coming soon)

- Identity verification systems
- Social media content moderation
- Digital forensics
- Security applications
## πŸ“„ License

This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.
## 🌟 Acknowledgments

- Thanks to all contributors and researchers in the field
- Special thanks to the open-source community

## πŸ“ Citation

If you use AuthentiVision in your research or project, please cite our technical blog:

```bibtex
@online{authentivision2024,
    title={AuthentiVision: Finding Yourself in the Real World},
    author={Haijian Wang and Zhangbei Ding and Yefan Niu and Xiaoming Zhang},
    year={2024},
    url={https://timelabhub.github.io/},
    note={Medium blog post}
}