--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-gujarati-finetuned results: [] datasets: - haideraqeeb/gujrati_asr_16kHz language: - gu --- # whisper-gujarati-finetuned This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on [haideraqeeb/gujrati_asr_16kHz](https://huggingface.co/datasets/haideraqeeb/gujrati_asr_16kHz) dataset. It achieves the following results on the evaluation set: - Loss: 0.2094 - Wer: 66.2514 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2704 | 0.2251 | 1000 | 0.2671 | 72.1276 | | 0.2289 | 0.4502 | 2000 | 0.2318 | 69.1844 | | 0.2105 | 0.6754 | 3000 | 0.2159 | 66.8424 | | 0.199 | 0.9005 | 4000 | 0.2094 | 66.2514 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0