--- language: - ur license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer model-index: - name: Whisper Small Ur - Bakht Ullah results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: 'config: ur, split: test' metrics: - name: Wer type: wer value: 47.34088927637315 --- # Whisper Small Ur - Bakht Ullah This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 7.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8930 - Wer: 47.3409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6104 | 4.17 | 100 | 1.1037 | 163.3827 | | 0.0242 | 8.33 | 200 | 0.8656 | 47.6024 | | 0.0042 | 12.5 | 300 | 0.8930 | 47.3409 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2