from typing import Dict from PIL import Image import numpy as np import os import json import tensorflow as tf from tensorflow import keras class PreTrainedPipeline(): def __init__(self, path=""): self.model = keras.saving.load_model("./") with open(os.path.join(path, "config.json")) as config: config = json.load(config) self.id2label = config["id2label"] def __call__(self, inputs: "Image.Image")-> Dict[str, str]: """ Args: inputs (:obj:`PIL.Image`): The raw image representation as PIL. No transformation made whatsoever from the input. Make all necessary transformations here. Return: A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} It is preferred if the returned list is in decreasing `score` order """ img = keras.preprocessing.image.load_img(input, target_size=(224, 224)) x = keras.preprocessing.image.img_to_array(img) x = np.expand_dims(x, axis=0) x = keras.applications.vgg16.preprocess_input(x) prediction = self.model.predict(x) return { 'label': "detected", 'score': "dragon" if prediction[0][0] >= 0.99 else "not-dragon" }