hadifar commited on
Commit
09d5908
·
verified ·
1 Parent(s): 020144e

Upload RobertaForSequenceClassification

Browse files
Files changed (3) hide show
  1. README.md +199 -0
  2. config.json +74 -34
  3. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "model/bea_classifier",
3
  "architectures": [
4
  "RobertaForSequenceClassification"
5
  ],
@@ -11,42 +11,82 @@
11
  "hidden_dropout_prob": 0.1,
12
  "hidden_size": 768,
13
  "id2label": {
14
- "0": "Acquisition",
15
- "1": "Company_Invest",
16
- "2": "Contract",
17
- "3": "Government_Invest",
18
- "4": "Market_Outlook",
19
- "5": "New_Product",
20
- "6": "Other",
21
- "7": "Partnership",
22
- "8": "Sell",
23
- "9": "Supply_Environment",
24
- "10": "Economic_Trend",
25
- "11": "Company_Other",
26
- "12": "Regulation",
27
- "13": "Company_Finance",
28
- "14": "Tech_Adaptation",
29
- "15": "Company_Patent"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  },
31
  "initializer_range": 0.02,
32
  "intermediate_size": 3072,
33
  "label2id": {
34
- "Acquisition": 0,
35
- "Company_Finance": 13,
36
- "Company_Invest": 1,
37
- "Company_Other": 11,
38
- "Company_Patent": 15,
39
- "Contract": 2,
40
- "Economic_Trend": 10,
41
- "Government_Invest": 3,
42
- "Market_Outlook": 4,
43
- "New_Product": 5,
44
- "Other": 6,
45
- "Partnership": 7,
46
- "Regulation": 12,
47
- "Sell": 8,
48
- "Supply_Environment": 9,
49
- "Tech_Adaptation": 14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  },
51
  "layer_norm_eps": 1e-05,
52
  "max_position_embeddings": 514,
@@ -57,7 +97,7 @@
57
  "position_embedding_type": "absolute",
58
  "problem_type": "single_label_classification",
59
  "torch_dtype": "float32",
60
- "transformers_version": "4.31.0",
61
  "type_vocab_size": 1,
62
  "use_cache": true,
63
  "vocab_size": 50265
 
1
  {
2
+ "_name_or_path": "model/bea_classifier_v2.1_36",
3
  "architectures": [
4
  "RobertaForSequenceClassification"
5
  ],
 
11
  "hidden_dropout_prob": 0.1,
12
  "hidden_size": 768,
13
  "id2label": {
14
+ "0": "Academic_Activity",
15
+ "1": "Acquisition",
16
+ "2": "Art_Culture",
17
+ "3": "Company_Company_Partnership",
18
+ "4": "Company_Compliance_Issues",
19
+ "5": "Company_Contract",
20
+ "6": "Company_Event",
21
+ "7": "Company_Finance",
22
+ "8": "Company_Governance",
23
+ "9": "Company_Insight",
24
+ "10": "Company_Invest",
25
+ "11": "Company_Government_Partnership",
26
+ "12": "Company_Patent",
27
+ "13": "Company_Product_Stop",
28
+ "14": "Company_Sale",
29
+ "15": "Company_Startup",
30
+ "16": "Company_Supply_Disruption",
31
+ "17": "Company_Workforce_Dynamic",
32
+ "18": "Competitive_Landscape",
33
+ "19": "Crypto",
34
+ "20": "Disaster_ManMade",
35
+ "21": "Disaster_Natural",
36
+ "22": "Economic_Indicator_Lagging",
37
+ "23": "Economic_Indicator_Leading",
38
+ "24": "Government_Invest",
39
+ "25": "Government_Policy",
40
+ "26": "Government_Politic",
41
+ "27": "Market_Outlook",
42
+ "28": "Other",
43
+ "29": "Product_Issues",
44
+ "30": "Product_Release",
45
+ "31": "Product_Rumor",
46
+ "32": "Product_Upgrade",
47
+ "33": "Sport",
48
+ "34": "Supply_Environment",
49
+ "35": "Technology_Usecase"
50
  },
51
  "initializer_range": 0.02,
52
  "intermediate_size": 3072,
53
  "label2id": {
54
+ "Academic_Activity": 0,
55
+ "Acquisition": 1,
56
+ "Art_Culture": 2,
57
+ "Company_Company_Partnership": 3,
58
+ "Company_Compliance_Issues": 4,
59
+ "Company_Contract": 5,
60
+ "Company_Event": 6,
61
+ "Company_Finance": 7,
62
+ "Company_Governance": 8,
63
+ "Company_Government_Partnership": 11,
64
+ "Company_Insight": 9,
65
+ "Company_Invest": 10,
66
+ "Company_Patent": 12,
67
+ "Company_Product_Stop": 13,
68
+ "Company_Sale": 14,
69
+ "Company_Startup": 15,
70
+ "Company_Supply_Disruption": 16,
71
+ "Company_Workforce_Dynamic": 17,
72
+ "Competitive_Landscape": 18,
73
+ "Crypto": 19,
74
+ "Disaster_ManMade": 20,
75
+ "Disaster_Natural": 21,
76
+ "Economic_Indicator_Lagging": 22,
77
+ "Economic_Indicator_Leading": 23,
78
+ "Government_Invest": 24,
79
+ "Government_Policy": 25,
80
+ "Government_Politic": 26,
81
+ "Market_Outlook": 27,
82
+ "Other": 28,
83
+ "Product_Issues": 29,
84
+ "Product_Release": 30,
85
+ "Product_Rumor": 31,
86
+ "Product_Upgrade": 32,
87
+ "Sport": 33,
88
+ "Supply_Environment": 34,
89
+ "Technology_Usecase": 35
90
  },
91
  "layer_norm_eps": 1e-05,
92
  "max_position_embeddings": 514,
 
97
  "position_embedding_type": "absolute",
98
  "problem_type": "single_label_classification",
99
  "torch_dtype": "float32",
100
+ "transformers_version": "4.38.2",
101
  "type_vocab_size": 1,
102
  "use_cache": true,
103
  "vocab_size": 50265
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f6acd2f47bdc47ea9a8004f23050ecd85ecfc608047f3c684b331dc256aefe0
3
+ size 498717408