--- base_model: openai/clip-vit-base-patch32 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: ktp-not-ktp-clip results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.989010989010989 --- # ktp-not-ktp-clip This model is a fine-tuned version of [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1267 - Accuracy: 0.9890 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.5809 | 0.6374 | | No log | 2.0 | 14 | 1.3401 | 0.6703 | | 0.5558 | 3.0 | 21 | 0.6458 | 0.7692 | | 0.5558 | 4.0 | 28 | 0.3785 | 0.8681 | | 0.1701 | 5.0 | 35 | 0.3004 | 0.9451 | | 0.1701 | 6.0 | 42 | 0.2204 | 0.9560 | | 0.142 | 7.0 | 49 | 0.1483 | 0.9341 | | 0.142 | 8.0 | 56 | 0.1386 | 0.9670 | | 0.1002 | 9.0 | 63 | 0.7714 | 0.8681 | | 0.1002 | 10.0 | 70 | 0.2285 | 0.9341 | | 0.0956 | 11.0 | 77 | 0.1162 | 0.9780 | | 0.0956 | 12.0 | 84 | 0.1104 | 0.9780 | | 0.0004 | 13.0 | 91 | 0.1722 | 0.9780 | | 0.0004 | 14.0 | 98 | 0.2109 | 0.9780 | | 0.0209 | 15.0 | 105 | 0.3321 | 0.9560 | | 0.0209 | 16.0 | 112 | 0.0785 | 0.9780 | | 0.0209 | 17.0 | 119 | 0.1525 | 0.9670 | | 0.0014 | 18.0 | 126 | 0.1436 | 0.9670 | | 0.0014 | 19.0 | 133 | 0.2278 | 0.9670 | | 0.0002 | 20.0 | 140 | 0.3035 | 0.9560 | | 0.0002 | 21.0 | 147 | 0.1239 | 0.9780 | | 0.001 | 22.0 | 154 | 0.1211 | 0.9890 | | 0.001 | 23.0 | 161 | 0.1253 | 0.9890 | | 0.0 | 24.0 | 168 | 0.1265 | 0.9890 | | 0.0 | 25.0 | 175 | 0.1267 | 0.9890 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1