--- license: apache-2.0 base_model: hZzy/qwen2.5-0.5b-sft-news-IFT tags: - alignment-handbook - ndcg - trl - expo - generated_from_trainer - trl - expo - generated_from_trainer datasets: - hZzy/train_pairwise model-index: - name: qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.05-5e6 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/yzayr01r) # qwen2.5-0.5b-expo-L2EXPO-EXPERIMENT-0.05-5e6 This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set: - Loss: 0.4402 - Logps: -77.2011 - Logits: -0.8985 - Objective: 0.4385 - Dpo Loss: 0.6860 - Regularize: 0.4385 - Ranking Simple: 0.5320 - Ranking Idealized: 0.6570 - Ranking Idealized Expo: 0.5114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 6 - gradient_accumulation_steps: 12 - total_train_batch_size: 288 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-----------------:|:----------------------:| | 0.3566 | 0.2834 | 50 | 0.4133 | -96.4831 | -1.6203 | 0.4237 | 0.6898 | 0.4237 | 0.5165 | 0.6570 | 0.5114 | | 0.3027 | 0.5668 | 100 | 0.4142 | -88.4100 | -1.3063 | 0.4151 | 0.6862 | 0.4151 | 0.5217 | 0.6570 | 0.5114 | | 0.2706 | 0.8503 | 150 | 0.4262 | -87.3674 | -1.1981 | 0.4277 | 0.6857 | 0.4277 | 0.5279 | 0.6570 | 0.5114 | | 0.2256 | 1.1337 | 200 | 0.4347 | -81.8119 | -1.2023 | 0.4344 | 0.6862 | 0.4344 | 0.5248 | 0.6570 | 0.5114 | | 0.2005 | 1.4171 | 250 | 0.4292 | -81.8212 | -1.0616 | 0.4289 | 0.6815 | 0.4289 | 0.5227 | 0.6570 | 0.5114 | | 0.187 | 1.7005 | 300 | 0.4369 | -80.0077 | -1.0398 | 0.4362 | 0.6845 | 0.4362 | 0.5258 | 0.6570 | 0.5114 | | 0.1664 | 1.9839 | 350 | 0.4382 | -79.6308 | -0.9982 | 0.4359 | 0.6842 | 0.4359 | 0.5289 | 0.6570 | 0.5114 | | 0.1368 | 2.2674 | 400 | 0.4408 | -80.2038 | -1.0155 | 0.4378 | 0.6859 | 0.4378 | 0.5320 | 0.6570 | 0.5114 | | 0.122 | 2.5508 | 450 | 0.4415 | -78.4288 | -0.8946 | 0.4404 | 0.6863 | 0.4404 | 0.5258 | 0.6570 | 0.5114 | | 0.1063 | 2.8342 | 500 | 0.4411 | -78.1278 | -0.8683 | 0.4384 | 0.6861 | 0.4384 | 0.5300 | 0.6570 | 0.5114 | | 0.0878 | 3.1176 | 550 | 0.4406 | -77.6391 | -0.8292 | 0.4378 | 0.6848 | 0.4378 | 0.5331 | 0.6570 | 0.5114 | | 0.0719 | 3.4010 | 600 | 0.4396 | -77.4923 | -0.8875 | 0.4373 | 0.6851 | 0.4373 | 0.5310 | 0.6570 | 0.5114 | | 0.0618 | 3.6845 | 650 | 0.4395 | -77.1838 | -0.9103 | 0.4386 | 0.6855 | 0.4386 | 0.5269 | 0.6570 | 0.5114 | | 0.0551 | 3.9679 | 700 | 0.4402 | -77.7209 | -0.9137 | 0.4388 | 0.6859 | 0.4388 | 0.5289 | 0.6570 | 0.5114 | | 0.0388 | 4.2513 | 750 | 0.4404 | -77.0700 | -0.8976 | 0.4386 | 0.6859 | 0.4386 | 0.5310 | 0.6570 | 0.5114 | | 0.0382 | 4.5347 | 800 | 0.4402 | -77.2473 | -0.8972 | 0.4384 | 0.6859 | 0.4384 | 0.5320 | 0.6570 | 0.5114 | | 0.032 | 4.8181 | 850 | 0.4402 | -77.2053 | -0.8983 | 0.4385 | 0.6860 | 0.4385 | 0.5320 | 0.6570 | 0.5114 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1