File size: 3,616 Bytes
afc9e0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
tags:
- text-to-image
license: openrail++
inference: false
---

# One More Step

One More Step (OMS) module was proposed in [One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion Schedule Flaws and Enhancing Low-Frequency Controls](https://github.com/mhh0318/OneMoreStep)
by *Minghui Hu, Jianbin Zheng, Chuanxia Zheng, Tat-Jen Cham et al.*


By **adding one small step** on the top the sampling process, we can address the issues caused by the current schedule flaws of diffusion models **without changing the original model parameters**. This also allows for some control over low-frequency information, such as color. 

Our model is **versatile** and can be integrated into almost all widely-used Stable Diffusion frameworks. It's compatible with community favorites such as **LoRA, ControlNet, Adapter, and foundational models**.


## Usage

OMS now is supported 🤗 `diffusers` with a customized pipeline [github](https://github.com/mhh0318/OneMoreStep).  To run the model (especially with `LCM` variant), first install the latest version of `diffusers` library as well as `accelerate` and `transformers`.

```bash
pip install --upgrade pip
pip install --upgrade diffusers transformers accelerate
```

And then we clone the repo
```bash
git clone https://github.com/mhh0318/OneMoreStep.git
cd OneMoreStep
```


### SDXL

The OMS module can be loaded with SDXL base model `stabilityai/stable-diffusion-xl-base-1.0`. 
And all the SDXL based model and its LoRA can **share the same OMS** `h1t/oms_b_openclip_xl`.

Here is an example for SDXL with LCM-LoRA.
Firstly import the related packages and choose SDXL based backbone and LoRA:

```python
import torch
from diffusers import StableDiffusionXLPipeline, LCMScheduler

sd_pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", add_watermarker=False).to('cuda')

sd_scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
sd_pipe.load_lora_weights('latent-consistency/lcm-lora-sdxl', variant="fp16")
```

Following import the customized OMS pipeline to wrap the backbone and add OMS for sampling. We have uploaded the `.safetensors` to [HuggingFace Hub](https://huggingface.co/h1t/). There are 2 choices for SDXL backbone currently, one is base OMS module with OpenCLIP text encoder [h1t/oms_b_openclip_xl)](https://huggingface.co/h1t/oms_b_openclip_xl) and the other is large OMS module with two text encoder followed by SDXL architecture [h1t/oms_l_mixclip_xl)](https://huggingface.co/h1t/oms_b_mixclip_xl).
```python
from diffusers_patch import OMSPipeline

pipe = OMSPipeline.from_pretrained('h1t/oms_b_openclip_xl', sd_pipeline = sd_pipe, torch_dtype=torch.float16, variant="fp16", trust_remote_code=True, sd_scheduler=sd_scheduler)
pipe.to('cuda')
```

After setting a random seed, we can easily generate images with the OMS module.
```python
prompt = 'close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux'
generator = torch.Generator(device=pipe.device).manual_seed(1024)

image = pipe(prompt, guidance_scale=1, num_inference_steps=4, generator=generator)
image['images'][0]
```

Or we can offload the OMS module and generate a image only using backbone
```python
image = pipe(prompt, guidance_scale=1, num_inference_steps=4, generator=generator, oms_flag=False)
image['images'][0]
```

For more models and more functions like diverse prompt, please refer to [OMS Repo](https://github.com/mhh0318/OneMoreStep).