File size: 3,252 Bytes
38aee13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71f9ee3
38aee13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71f9ee3
38aee13
71f9ee3
 
 
 
38aee13
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
language:
- it
license: apache-2.0
tags:
- italian
- sequence-to-sequence
- style-transfer
- formality-style-transfer
datasets:
- yahoo/xformal_it
widget:
- text: "maronn qualcuno mi spieg' CHECCOSA SUCCEDE?!?!"
- text: "wellaaaaaaa, ma fraté sei proprio troppo simpatiko, grazieeee!!"
- text: "nn capisco xke tt i ragazzi lo fanno"
- text: "IT5 è SUPERMEGA BRAVISSIMO a capire tt il vernacolo italiano!!!"
metrics:
- rouge
- bertscore
model-index:
- name: mt5-small-informal-to-formal
  results:
  - task: 
      type: formality-style-transfer
      name: "Informal-to-formal Style Transfer"
    dataset:
      type: xformal_it
      name: "XFORMAL (Italian Subset)"
    metrics:
      - type: rouge1
        value: 0.638
        name: "Avg. Test Rouge1"
      - type: rouge2
        value: 0.446
        name: "Avg. Test Rouge2"
      - type: rougeL
        value: 0.620
        name: "Avg. Test RougeL"
      - type: bertscore
        value: 0.684
        name: "Avg. Test BERTScore"
        args:
          - model_type: "dbmdz/bert-base-italian-xxl-uncased"
          - lang: "it"
          - num_layers: 10
          - rescale_with_baseline: True
          - baseline_path: "bertscore_baseline_ita.tsv"
co2_eq_emissions:
      emissions: "17g"
      source: "Google Cloud Platform Carbon Footprint"
      training_type: "fine-tuning"
      geographical_location: "Eemshaven, Netherlands, Europe"
      hardware_used: "1 TPU v3-8 VM"
---

# mT5 Small for Informal-to-formal Style Transfer 🧐

This repository contains the checkpoint for the [mT5 Small](https://huggingface.co/google/mt5-small) model fine-tuned on Informal-to-formal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). 

A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach.

## Using the model

Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as:

```python
from transformers import pipelines

i2f = pipeline("text2text-generation", model='it5/mt5-small-informal-to-formal')
i2f("nn capisco xke tt i ragazzi lo fanno")
>>> [{"generated_text": "non comprendo perché tutti i ragazzi agiscono così"}]
```

or loaded using autoclasses:

```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("it5/mt5-small-informal-to-formal")
model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-small-informal-to-formal")
```

If you use this model in your research, please cite our work as:

```bibtex
@article{sarti-nissim-2022-it5,
    title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation},
    author={Sarti, Gabriele and Nissim, Malvina},
    journal={ArXiv preprint 2203.03759},
    url={https://arxiv.org/abs/2203.03759},
    year={2022},
	month={mar}
}
```