--- library_name: transformers license: apache-2.0 base_model: google/vit-large-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-large-patch16-224-new-dungeon-geo-morphs-002 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9787234042553191 --- # vit-large-patch16-224-new-dungeon-geo-morphs-002 This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0232 - Accuracy: 0.9787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.0832 | 4.4444 | 10 | 0.4421 | 0.9149 | | 0.1422 | 8.8889 | 20 | 0.0481 | 1.0 | | 0.0055 | 13.3333 | 30 | 0.0213 | 1.0 | | 0.0007 | 17.7778 | 40 | 0.0223 | 0.9787 | | 0.0003 | 22.2222 | 50 | 0.0205 | 0.9787 | | 0.0002 | 26.6667 | 60 | 0.0223 | 0.9787 | | 0.0002 | 31.1111 | 70 | 0.0232 | 0.9787 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3