--- library_name: transformers license: apache-2.0 base_model: google/vit-large-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-large-patch16-224-in21k-dungeon-geo-morphs-denoised-04Dec24-002 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9656565656565657 --- # vit-large-patch16-224-in21k-dungeon-geo-morphs-denoised-04Dec24-002 This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1107 - Accuracy: 0.9657 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4876 | 4.0 | 10 | 1.1611 | 0.6545 | | 0.6201 | 8.0 | 20 | 0.5442 | 0.9152 | | 0.1543 | 12.0 | 30 | 0.2724 | 0.9556 | | 0.0344 | 16.0 | 40 | 0.1593 | 0.9636 | | 0.0095 | 20.0 | 50 | 0.1314 | 0.9657 | | 0.0047 | 24.0 | 60 | 0.1091 | 0.9657 | | 0.0033 | 28.0 | 70 | 0.1139 | 0.9636 | | 0.0029 | 32.0 | 80 | 0.1107 | 0.9657 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3