File size: 2,352 Bytes
64415fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
library_name: transformers
license: apache-2.0
base_model: google/vit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-large-patch16-224-dungeons-001
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.75
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-large-patch16-224-dungeons-001

This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6325
- Accuracy: 0.75

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 85
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.8218        | 6.6667  | 10   | 1.8564          | 0.1667   |
| 1.4325        | 13.3333 | 20   | 1.7325          | 0.3333   |
| 0.8869        | 20.0    | 30   | 1.5186          | 0.4167   |
| 0.3717        | 26.6667 | 40   | 1.1131          | 0.6667   |
| 0.0945        | 33.3333 | 50   | 0.8408          | 0.75     |
| 0.0175        | 40.0    | 60   | 0.7224          | 0.75     |
| 0.0051        | 46.6667 | 70   | 0.6674          | 0.75     |
| 0.0024        | 53.3333 | 80   | 0.6325          | 0.75     |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1