griffio commited on
Commit
cd9704c
·
verified ·
1 Parent(s): 9df2647

Model save

Browse files
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/vit-large-patch16-224
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - imagefolder
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: vit-large-patch16-224-dungeon-geo-morphs-010
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: imagefolder
19
+ type: imagefolder
20
+ config: default
21
+ split: validation
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.9444444444444444
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # vit-large-patch16-224-dungeon-geo-morphs-010
33
+
34
+ This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the imagefolder dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.1230
37
+ - Accuracy: 0.9444
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 2e-05
57
+ - train_batch_size: 8
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 4
61
+ - total_train_batch_size: 32
62
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 35
66
+ - mixed_precision_training: Native AMP
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
71
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|
72
+ | 0.9545 | 6.5714 | 10 | 0.3644 | 0.9444 |
73
+ | 0.2033 | 13.2857 | 20 | 0.1559 | 0.9444 |
74
+ | 0.0472 | 19.8571 | 30 | 0.1230 | 0.9444 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.46.2
80
+ - Pytorch 2.5.0+cu121
81
+ - Datasets 3.1.0
82
+ - Tokenizers 0.20.3
runs/Nov13_19-27-09_479382b518a1/events.out.tfevents.1731526049.479382b518a1.957.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f187266b041cc3bc2864e2ef3feb6e9b62387ab42165ae327ac7946ad5a8a6b7
3
- size 6759
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ebd758be4ad364ec0e618e2dba2b2d46febd3da657a8d5f5c8d3a53a03b6671
3
+ size 7107