griffio commited on
Commit
f5a9ced
·
verified ·
1 Parent(s): 7418830

Model save

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/vit-large-patch16-224
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - imagefolder
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: vit-large-patch16-224-dungeon-geo-morphs-002
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: imagefolder
19
+ type: imagefolder
20
+ config: default
21
+ split: validation
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 1.0
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # vit-large-patch16-224-dungeon-geo-morphs-002
33
+
34
+ This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the imagefolder dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.1290
37
+ - Accuracy: 1.0
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 1e-05
57
+ - train_batch_size: 8
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 4
61
+ - total_train_batch_size: 32
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: cosine_with_restarts
64
+ - num_epochs: 15
65
+ - mixed_precision_training: Native AMP
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
71
+ | 0.2379 | 6.6667 | 10 | 0.1290 | 1.0 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.44.2
77
+ - Pytorch 2.5.0+cu121
78
+ - Datasets 3.1.0
79
+ - Tokenizers 0.19.1
runs/Nov12_16-02-51_5ee1c52bb489/events.out.tfevents.1731427382.5ee1c52bb489.1573.4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4b7d03e25df6fb4ec9a7b4f3975f1f67d6ec392f7896a067dcb50a9caafc3d47
3
- size 5657
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a90128dce956c7558c5c8568d5aeee2d498592691bac939fa92a1d44edddfb40
3
+ size 6005