--- library_name: transformers license: apache-2.0 base_model: google/vit-large-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-large-patch16-224-dungeon-geo-morphs-0-4-30Nov24-012 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9928571428571429 --- # vit-large-patch16-224-dungeon-geo-morphs-0-4-30Nov24-012 This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0681 - Accuracy: 0.9929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.4699 | 3.9091 | 10 | 0.9471 | 0.7821 | | 0.5263 | 7.9091 | 20 | 0.3796 | 0.9214 | | 0.1867 | 11.9091 | 30 | 0.2458 | 0.9357 | | 0.0908 | 15.9091 | 40 | 0.1267 | 0.9857 | | 0.0436 | 19.9091 | 50 | 0.0763 | 0.9929 | | 0.0256 | 23.9091 | 60 | 0.0681 | 0.9929 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3