--- library_name: transformers license: apache-2.0 base_model: google/vit-large-patch16-224 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-large-patch16-224-dungeon-geo-morphs-0-4-30Nov24-005 results: - task: name: Image Classification type: image-classification dataset: name: dungeon-geo-morphs type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9875 --- # vit-large-patch16-224-dungeon-geo-morphs-0-4-30Nov24-005 This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the dungeon-geo-morphs dataset. It achieves the following results on the evaluation set: - Loss: 0.1439 - Accuracy: 0.9875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.5645 | 4.3636 | 10 | 1.2976 | 0.525 | | 1.0147 | 8.7273 | 20 | 0.7672 | 0.8393 | | 0.5992 | 13.2727 | 30 | 0.4470 | 0.9446 | | 0.343 | 17.6364 | 40 | 0.2926 | 0.9589 | | 0.2065 | 22.1818 | 50 | 0.1980 | 0.9786 | | 0.1286 | 26.5455 | 60 | 0.1439 | 0.9875 | | 0.082 | 31.0909 | 70 | 0.1141 | 0.9857 | | 0.0649 | 35.4545 | 80 | 0.1032 | 0.9839 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3