--- library_name: transformers license: apache-2.0 base_model: google/vit-large-patch16-224 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-large-patch16-224-dungeon-geo-morphs-0-4-29Nov24-003 results: - task: name: Image Classification type: image-classification dataset: name: dungeon-geo-morphs type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # vit-large-patch16-224-dungeon-geo-morphs-0-4-29Nov24-003 This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the dungeon-geo-morphs dataset. It achieves the following results on the evaluation set: - Loss: 0.0773 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 45 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.679 | 4.0 | 10 | 1.3217 | 0.5661 | | 1.0782 | 8.0 | 20 | 0.7879 | 0.8054 | | 0.6196 | 12.0 | 30 | 0.4259 | 0.9232 | | 0.3697 | 16.0 | 40 | 0.2647 | 0.9554 | | 0.2093 | 20.0 | 50 | 0.1669 | 0.9804 | | 0.1362 | 24.0 | 60 | 0.1141 | 0.9875 | | 0.1049 | 28.0 | 70 | 0.0937 | 0.9929 | | 0.0809 | 32.0 | 80 | 0.0773 | 1.0 | | 0.0731 | 36.0 | 90 | 0.0713 | 1.0 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3