Gretel's baseline text2table was fine-tuned on togethercomputer's RedPajama-INCITE-instruct-3B-v1 model for 100 epochs on 8A100 80GB gpu's. The fine-tuning used ~2k training samples (text and table pairs) that were generated using OpenAI. ## Data Formatting ```python INSTRUCTION_KEY = "### Instruction: Given the following prompt, generate a table" RESPONSE_KEY = "### Response:" INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request." PROMPT_FOR_GENERATION_FORMAT = """{intro} {instruction_key} {prompt_to_generate_table} {response_key} {table} """.format( intro=INTRO_BLURB, instruction_key=INSTRUCTION_KEY, prompt_to_generate_table"{PROMPT}", response_key=RESPONSE_KEY, table="{TABLE}" ) ``` ## For generation purposes: ```python import torch from transformers import ( AutoModelForCausalLM, AutoTokenizer, ) tokenizer = AutoTokenizer.from_pretrained('togethercomputer/RedPajama-INCITE-Instruct-3B-v1', padding_side="right") model = AutoModelForCausalLM.from_pretrained('gretelai/text2table').to('cuda', dtype=torch.bfloat16) model.eval() INSTRUCTION_KEY = "### Instruction: Given the following prompt, generate a table." RESPONSE_KEY = "### Response:" INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request." PROMPT_FOR_GENERATION_FORMAT = """{intro} {instruction_key} {prompt_to_generate_table} {response_key} """.format( intro=INTRO_BLURB, instruction_key=INSTRUCTION_KEY, prompt_to_generate_table="{prompt_to_generate_table}", response_key=RESPONSE_KEY, ) PROMPT = "Create a dataset with four columns: patient, sex, agegrp, bp_before and bp_after. The patient column is a numerical identifier, sex is the gender of the patient, agegrp is the age group of the patient, bp_before is the blood pressure (in mmHg) before a certain treatment, and bp_after is the blood pressure (in mmHg) after a certain treatment." inputs = PROMPT_FOR_GENERATION_FORMAT.format(prompt_to_generate_table=PROMPT) tokenizer.pad_token = tokenizer.eos_token input = tokenizer(inputs, return_tensors="pt").to('cuda') input_ids = input['input_ids'] outputs = model.generate(**input, max_length = 1024) table = tokenizer.decode(outputs[0], skip_special_tokens=False) ``` ## Output ```python PROMPT = "Create a dataset with four columns: patient, sex, agegrp, bp_before and bp_after. The patient column is a numerical identifier, sex is the gender of the patient, agegrp is the age group of the patient, bp_before is the blood pressure (in mmHg) before a certain treatment, and bp_after is the blood pressure (in mmHg) after a certain treatment." MODEL GENERATION -> Below is an instruction that describes a task. Write a response that appropriately completes the request. Instruction: Given the following prompt, generate a table. Each column should have random values. Create a dataset with four columns: patient, sex, agegrp, bp_before and bp_after. The patient column is a numerical identifier, sex is the gender of the patient, agegrp is the age group of the patient, bp_before is the blood pressure (in mmHg) before a certain treatment, and bp_after is the blood pressure (in mmHg) after a certain treatment. Response: patient,sex,agegrp,bp_before,bp_after 1.0,F,45.0,183.0,124.0,234.0 2.0,F,60.0,183.0,124.0,183.0 3.0,F,70.0,179.0,117.0,183.0 4.0,M,30.0,141.0,136.0,161.0 5.0,M,70.0,147.0,129.0,157.0 6.0,M,40.0,140.0,136.0,156.0 7.0,M,60.0,140.0,116.0,157.0 8.0,M,70.0,144.0,131.0,161.0 9.0,M,60.0,142.0,119.0,157.0 10.0,M,70.0,147.0,132.0,167.0 11.0,M,60.0,147.0,136.0,166.0 12.0,M,70.0,150.0,132.0,172.0 13.0,M,60.0,149.0,137.0,162.0 14.0,M,70.0,156.0,124.0,157.0 15.0,M,60.0,156.0,181.0,157.0 16.0,M,70.0,156.0,131.0,158.0 ```