gregorgabrovsek
commited on
Commit
·
8a2471d
1
Parent(s):
66cd70f
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: SloBertAA_Top50_WithOOC_082023_MultilingualBertBase
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# SloBertAA_Top50_WithOOC_082023_MultilingualBertBase
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 1.6735
|
23 |
+
- Accuracy: 0.7607
|
24 |
+
- F1: 0.7597
|
25 |
+
- Precision: 0.7600
|
26 |
+
- Recall: 0.7607
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 12
|
47 |
+
- eval_batch_size: 12
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
56 |
+
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|
|
57 |
+
| 1.2345 | 1.0 | 33346 | 1.1611 | 0.6809 | 0.6782 | 0.6864 | 0.6809 |
|
58 |
+
| 0.9498 | 2.0 | 66692 | 1.0380 | 0.7149 | 0.7106 | 0.7257 | 0.7149 |
|
59 |
+
| 0.7929 | 3.0 | 100038 | 0.9825 | 0.7368 | 0.7340 | 0.7384 | 0.7368 |
|
60 |
+
| 0.6319 | 4.0 | 133384 | 0.9972 | 0.7453 | 0.7436 | 0.7480 | 0.7453 |
|
61 |
+
| 0.4944 | 5.0 | 166730 | 1.0890 | 0.7479 | 0.7461 | 0.7498 | 0.7479 |
|
62 |
+
| 0.3771 | 6.0 | 200076 | 1.1597 | 0.7523 | 0.7506 | 0.7518 | 0.7523 |
|
63 |
+
| 0.2644 | 7.0 | 233422 | 1.3175 | 0.7553 | 0.7538 | 0.7547 | 0.7553 |
|
64 |
+
| 0.1736 | 8.0 | 266768 | 1.4977 | 0.7559 | 0.7549 | 0.7575 | 0.7559 |
|
65 |
+
| 0.1184 | 9.0 | 300114 | 1.6160 | 0.7595 | 0.7579 | 0.7580 | 0.7595 |
|
66 |
+
| 0.0784 | 10.0 | 333460 | 1.6735 | 0.7607 | 0.7597 | 0.7600 | 0.7607 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.26.1
|
72 |
+
- Pytorch 1.8.0
|
73 |
+
- Datasets 2.10.1
|
74 |
+
- Tokenizers 0.13.2
|